中字幕视频在线永久在线观看免费,亚洲av色香蕉一区二区蜜桃小说 ,亚洲精品中文字幕无码蜜桃,亚洲av无码一区二区三区在线播放,亚洲国产日韩a综合在线

當(dāng)前位置: 首頁 > 學(xué)科分類 > 數(shù)學(xué)

高中數(shù)學(xué)等差數(shù)列ppt,高中數(shù)學(xué)等差數(shù)列前n項(xiàng)和ppt

  • 數(shù)學(xué)
  • 2023-12-03

高中數(shù)學(xué)等差數(shù)列ppt?增強(qiáng)學(xué)生學(xué)習(xí)數(shù)列的興趣.在探索的過程中,學(xué)生通過分析、觀察,歸納出等差數(shù)列定義,然后由定義導(dǎo)出通項(xiàng)公式,強(qiáng)化了由具體到抽象,由特殊到一般的思維過程,有助于提高學(xué)生分析問題和解決問題的能力.本節(jié)課教學(xué)采用啟發(fā)方法,以教師提出問題、那么,高中數(shù)學(xué)等差數(shù)列ppt?一起來了解一下吧。

高中數(shù)學(xué)等差數(shù)列知識(shí)點(diǎn)

等差數(shù)列是指從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù)的一種數(shù)列,常用A、P表示。這個(gè)常數(shù)叫做等差數(shù)列的公差,公差常用字母d表示。接下來是我為大家整理的高中數(shù)學(xué)等差數(shù)列教案大全,希望大家喜歡!

高中數(shù)學(xué)等差數(shù)列教案大全一

“等差數(shù)列”教學(xué)設(shè)計(jì)

一、教學(xué)內(nèi)容分析

等差數(shù)列是《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書?數(shù)學(xué)5》(人教版)第二章數(shù)列第二節(jié)等差數(shù)列第一課時(shí)。

數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實(shí)際應(yīng)用,而且起著承前啟后的作用。一方面,?數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進(jìn)一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項(xiàng)公式和遞推公式的基礎(chǔ)上,對(duì)數(shù)列的知識(shí)進(jìn)一步深入和拓廣。

二、教學(xué)目標(biāo)

1、通過本節(jié)課的學(xué)習(xí)使學(xué)生理解并掌握等差數(shù)列的概念,能用定義判斷一個(gè)數(shù)列是否為等差數(shù)列。

2、引導(dǎo)學(xué)生了解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程及思想,會(huì)求等差數(shù)列的公差及通項(xiàng)公式,能在解題中靈活應(yīng)用,初步引入“數(shù)學(xué)建?!钡乃枷敕椒ú⒛苓\(yùn)用;并在此過程中培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力。

3、在領(lǐng)會(huì)函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學(xué)生的知識(shí)、方法遷移能力;通過階梯性練習(xí),提高學(xué)生分析問題和解決問題的能力。

高中數(shù)學(xué)數(shù)列ppt

如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,公差常用字母d表示.

等差數(shù)列的通項(xiàng)公式為:

an=a1+(n-1)d (1)

前n項(xiàng)和公式為:

Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)

從(1)式可以看出,an是n的一次數(shù)函(d≠0)或常數(shù)函數(shù)(d=0),(n,an)排在一條直線上,由(2)式知,Sn是n的二次函數(shù)(d≠0)或一次函數(shù)(d=0,a1≠0),且常數(shù)項(xiàng)為0.

在等差數(shù)列中,等差中項(xiàng):一般設(shè)為Ar,Am+An=2Ar,所以Ar為Am,An的等差中項(xiàng).

且任意兩項(xiàng)am,an的關(guān)系為:

an=am+(n-m)d

它可以看作等差數(shù)列廣義的通項(xiàng)公式.

從等差數(shù)列的定義、通項(xiàng)公式,前n項(xiàng)和公式還可推出:

a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}

若m,n,p,q∈N*,且m+n=p+q,則有

am+an=ap+aq

Sm-1=(2n-1)an,S2n+1=(2n+1)an+1

Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差數(shù)列,等等.

和=(首項(xiàng)+末項(xiàng))*項(xiàng)數(shù)÷2

項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))÷公差+1

首項(xiàng)=2和÷項(xiàng)數(shù)-末項(xiàng)

末項(xiàng)=2和÷項(xiàng)數(shù)-首項(xiàng)

項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))/公差+1

如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)非零常數(shù),這個(gè)數(shù)列就叫做等比數(shù)列(geometric progression).這個(gè)常數(shù)叫做等比數(shù)列的公比(common ratio),公比通常用字母q表示(q≠0).注:q=1時(shí),an為常數(shù)列.(1)等比數(shù)列的通項(xiàng)公式是:An=A1*q^(n-1)

等比數(shù)列通式

若通項(xiàng)公式變形為an=a1/q*q^n(n∈N*),當(dāng)q>0時(shí),則可把a(bǔ)n看作自變量n的函數(shù),點(diǎn)(n,an)是曲線y=a1/q*q^x上的一群孤立的點(diǎn).(2)求和公式:Sn=nA1(q=1) Sn=A1(1-q^n)/(1-q) =(a1-a1q^n)/(1-q) =(a1-an*q)/(1-q) =a1/(1-q)-a1/(1-q)*q^n ( 即A-Aq^n)

等比數(shù)列求和公式

(前提:q≠ 1) 任意兩項(xiàng)am,an的關(guān)系為an=am·q^(n-m);在運(yùn)用等比數(shù)列的前n相和時(shí),一定要注意討論公比q是否為1.(3)從等比數(shù)列的定義、通項(xiàng)公式、前n項(xiàng)和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n} (4)等比中項(xiàng):aq·ap=ar^2,ar則為ap,aq等比中項(xiàng).記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1 另外,一個(gè)各項(xiàng)均為正數(shù)的等比數(shù)列各項(xiàng)取同底數(shù)后構(gòu)成一個(gè)等差數(shù)列;反之,以任一個(gè)正數(shù)C為底,用一個(gè)等差數(shù)列的各項(xiàng)做指數(shù)構(gòu)造冪Can,則是等比數(shù)列.在這個(gè)意義下,我們說:一個(gè)正項(xiàng)等比數(shù)列與等差數(shù)列是“同構(gòu)”的.等比中項(xiàng)定義:從第二項(xiàng)起,每一項(xiàng)(有窮數(shù)列和末項(xiàng)除外)都是它的前一項(xiàng)與后一項(xiàng)的等比中 項(xiàng).等比中項(xiàng)公式:An/An-1=An+1/An或者(An-1)(An+1)=An^2 (5)無窮遞縮等比數(shù)列各項(xiàng)和公式:無窮遞縮等比數(shù)列各項(xiàng)和公式:公比的絕對(duì)值小于1的無窮等比數(shù)列,當(dāng)n無限增大時(shí)的極限叫做這個(gè)無窮等比數(shù)列各項(xiàng)的和.(6)由等比數(shù)列組成的新的等比數(shù)列的公比:{an}是公比為q的等比數(shù)列 1.若A=a1+a2+……+an B=an+1+……+a2n C=a2n+1+……a3n 則,A、B、C構(gòu)成新的等比數(shù)列,公比Q=q^n 2.若A=a1+a4+a7+……+a3n-2 B=a2+a5+a8+……+a3n-1 C=a3+a6+a9+……+a3n 則,A、B、C構(gòu)成新的等比數(shù)列,公比Q=q編輯本段性質(zhì)

(1)若 m、n、p、q∈N*,且m+n=p+q,則am*an=ap*aq; (2)在等比數(shù)列中,依次每 k項(xiàng)之和仍成等比數(shù)列.(3)“G是a、b的等比中項(xiàng)”“G^2=ab(G≠0)”.(4)若{an}是等比數(shù)列,公比為q1,{bn}也是等比數(shù)列,公比是q2,則 {a2n},{a3n}…是等比數(shù)列,公比為q1^2,q1^3… {can},c是常數(shù),{an*bn},{an/bn}是等比數(shù)列,公比為q1,q1q2,q1/q2.(5)等比數(shù)列中,連續(xù)的,等長(zhǎng)的,間隔相等的片段和為等比.(6)若(an)為等比數(shù)列且各項(xiàng)為正,公比為q,則(log以a為底an的對(duì)數(shù))成等差,公差為log以a為底q的對(duì)數(shù).(7) 等比數(shù)列前n項(xiàng)之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1) (8) 數(shù)列{An}是等比數(shù)列,An=pn+q,則An+K=pn+K也是等比數(shù)列,在等比數(shù)列中,首項(xiàng)A1與公比q都不為零.注意:上述公式中A^n表示A的n次方.(9)由于首項(xiàng)為a1,公比為q的等比數(shù)列的通向公式可以寫成an*q/a1=q^n,它的指數(shù)函數(shù)y=a^x有著密切的聯(lián)系,從而可以利用指數(shù)函數(shù)的性質(zhì)來研究等比數(shù)列.編輯本段求通項(xiàng)公式的方法

(1)待定系數(shù)法:已知a(n+1)=2an+3,a1=1,求an 構(gòu)造等比數(shù)列a(n+1)+x=2(an+x) a(n+1)=2an+x,∵a(n+1)=2an+3 ∴x=3 所以(a(n+1)+3)/(an+3)=2 ∴{an+3}為首項(xiàng)為4,公比為2的等比數(shù)列,所以an+3=a1*q^(n-1)=4*2^(n-1),an=2^(n+1)-3

高一數(shù)學(xué)等差數(shù)列教學(xué)方法

【 #課件#導(dǎo)語】課件的選擇要依據(jù)教學(xué)的內(nèi)容、本人的教學(xué)風(fēng)格、學(xué)生的理解和接受能力而定,以達(dá)到課堂教學(xué)效果化為準(zhǔn)。好的課件像磁石,能把學(xué)生分散的思維一下子聚攏起來;好的課件又是思想的電光石火,能給學(xué)生以啟迪,提高整個(gè)智力活動(dòng)的積極性,為授課的成功奠定良好的基礎(chǔ)。下面就由 無 為大家?guī)砀咧袛?shù)學(xué)優(yōu)質(zhì)課件:《等差數(shù)列》,歡迎各位參考借鑒!

高中數(shù)學(xué)優(yōu)質(zhì)課件篇一:《等差數(shù)列》

【教學(xué)目標(biāo)】

1.知識(shí)與技能

(1)理解等差數(shù)列的定義,會(huì)應(yīng)用定義判斷一個(gè)數(shù)列是否是等差數(shù)列:

(2)賬務(wù)等差數(shù)列的通項(xiàng)公式及其推導(dǎo)過程:

(3)會(huì)應(yīng)用等差數(shù)列通項(xiàng)公式解決簡(jiǎn)單問題。

2.過程與方法

在定義的理解和通項(xiàng)公式的推導(dǎo)、應(yīng)用過程中,培養(yǎng)學(xué)生的觀察、分析、歸納能力和嚴(yán)密的邏輯思維的能力,體驗(yàn)從特殊到一般,一般到特殊的認(rèn)知規(guī)律,提高熟悉猜想和歸納的能力,滲透函數(shù)與方程的思想。

3.情感、態(tài)度與價(jià)值觀

通過教師指導(dǎo)下學(xué)生的自主學(xué)習(xí)、相互交流和探索活動(dòng),培養(yǎng)學(xué)生主動(dòng)探索、用于發(fā)現(xiàn)的求知精神,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生感受到成功的喜悅。在解決問題的過程中,使學(xué)生養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好習(xí)慣。

高中等差數(shù)列ppt課件

高中數(shù)學(xué)必修5《等差數(shù)列》教案【一】

教學(xué)準(zhǔn)備

教學(xué)目標(biāo)

掌握等差數(shù)列與等比數(shù)列的概念,通項(xiàng)公式與前n項(xiàng)和公式,等差中項(xiàng)與等比中項(xiàng)的概念,并能運(yùn)用這些知識(shí)解決一些基本問題.

教學(xué)重難點(diǎn)

教學(xué)過程

等比數(shù)列性質(zhì)請(qǐng)同學(xué)們類比得出.

【方法規(guī)律】

1、通項(xiàng)公式與前n項(xiàng)和公式聯(lián)系著五個(gè)基本量,“知三求二”是一類最基本的運(yùn)算題.方程觀點(diǎn)是解決這類問題的基本數(shù)學(xué)思想和方法.

2、判斷一個(gè)數(shù)列是等差數(shù)列或等比數(shù)列,常用的方法使用定義.特別地,在判斷三個(gè)實(shí)數(shù)

a,b,c成等差(比)數(shù)列時(shí),常用(注:若為等比數(shù)列,則a,b,c均不為0)

3、在求等差數(shù)列前n項(xiàng)和的最大(小)值時(shí),常用函數(shù)的思想和方法加以解決.

【示范舉例】

例1:(1)設(shè)等差數(shù)列的前n項(xiàng)和為30,前2n項(xiàng)和為100,則前3n項(xiàng)和為 .

(2)一個(gè)等比數(shù)列的前三項(xiàng)之和為26,前六項(xiàng)之和為728,則a1= ,q= .

例2:四數(shù)中前三個(gè)數(shù)成等比數(shù)列,后三個(gè)數(shù)成等差數(shù)列,首末兩項(xiàng)之和為21,中間兩項(xiàng)之和為18,求此四個(gè)數(shù).

例3:項(xiàng)數(shù)為奇數(shù)的等差數(shù)列,奇數(shù)項(xiàng)之和為44,偶數(shù)項(xiàng)之和為33,求該數(shù)列的中間項(xiàng).

高中數(shù)學(xué)必修5《等差數(shù)列》教案【二】

教學(xué)準(zhǔn)備

教學(xué)目標(biāo)

知識(shí)目標(biāo) 等差數(shù)列定義 等差數(shù)列通項(xiàng)公式

能力目標(biāo) 掌握等差數(shù)列定義 等差數(shù)列通項(xiàng)公式

情感目標(biāo) 培養(yǎng)學(xué)生的觀察、推理、歸納能力

教學(xué)重難點(diǎn)

教學(xué)重點(diǎn) 等差數(shù)列的概念的理解與掌握

等差數(shù)列通項(xiàng)公式推導(dǎo)及應(yīng)用 教學(xué)難點(diǎn) 等差數(shù)列 “等差”的理解、把握和應(yīng)用

教學(xué)過程

由電影《紅高粱》主題曲“酒神曲”引入等差數(shù)列定義

問題:多媒體演示,觀察----發(fā)現(xiàn)?

一、等差數(shù)列定義:

一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列。

等差數(shù)列的概念PPT

等差數(shù)列公式全部高中如下:

等差數(shù)列的通項(xiàng)公式為:a(n)=a(1)+(n-1)*d。前n項(xiàng)和公式為:S(n)=n*a(1)+n*(n-1)*d/2。

前n項(xiàng)和公式為:S(n)=n*(a(1)+a(n))/2。等差數(shù)列的公式:公差d=(an-a1)÷(n-1)(其中n大于或等于2,n屬于正整數(shù))。項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng)來)÷公差+1。末項(xiàng)=首項(xiàng)+(項(xiàng)數(shù)-1)×公差。

前n項(xiàng)的和Sn=首項(xiàng)×n+項(xiàng)數(shù)(項(xiàng)數(shù)-1)公差/2。第n項(xiàng)的值an=首項(xiàng)+(項(xiàng)數(shù)-1)×公差。等差數(shù)源列中知項(xiàng)公式2an+1=an+an+2其中{an}是等差數(shù)列。第n項(xiàng)的值an=首項(xiàng)+(項(xiàng)數(shù)-1)×公差。

an=am+(n-m)d ,若已知某一項(xiàng)am,可列出與d有關(guān)的式子求解an。例如 a10=a4+6d或者a3=a7-4d。前n項(xiàng)的和Sn=首項(xiàng)×n+項(xiàng)數(shù)(項(xiàng)數(shù)-1)公差/2。公差d=(an-a1)÷(n-1)(其中n大于或等于2,n屬于正整數(shù))。

項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))÷公差+1。末項(xiàng)=首項(xiàng)+(項(xiàng)數(shù)-1)×公差。當(dāng)數(shù)列為奇數(shù)項(xiàng)時(shí),前n項(xiàng)的和=中間項(xiàng)×項(xiàng)數(shù)。數(shù)列為偶數(shù)項(xiàng),前n項(xiàng)的和=(首尾項(xiàng)相加×項(xiàng)數(shù))÷2。

注意:等差數(shù)列是常見數(shù)列的一種,可以用AP表示,如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),這個(gè)數(shù)列就叫做等差數(shù)列,而這個(gè)常數(shù)叫做等差數(shù)列的公差,公差常用字母d表示。

以上就是高中數(shù)學(xué)等差數(shù)列ppt的全部?jī)?nèi)容,等差數(shù)列公式全部高中如下:等差數(shù)列的通項(xiàng)公式為:a(n)=a(1)+(n-1)*d。前n項(xiàng)和公式為:S(n)=n*a(1)+n*(n-1)*d/2。前n項(xiàng)和公式為:S(n)=n*(a(1)+a(n))/2。

猜你喜歡

話題標(biāo)簽

  • 花花英語怎么說,花花的英文簡(jiǎn)寫
  • 七上歷史知識(shí)點(diǎn)總結(jié),初一歷史必背知識(shí)點(diǎn)打印人教版
  • 小學(xué)數(shù)學(xué)教師個(gè)人簡(jiǎn)介,小學(xué)數(shù)學(xué)教師墻個(gè)人簡(jiǎn)介50字
  • 高考化學(xué)基礎(chǔ)知識(shí),高考化學(xué)主要考什么?