目錄七年級下冊作全解的課本 人教版七年級下冊全解 數(shù)學(xué)七年級下冊教材全解 七年級下冊數(shù)學(xué)課堂全解 七年級下冊數(shù)學(xué)全解電子書
知識的寬度、厚度和精度決定人的成熟度。每一個人比別人成功,只不過是多學(xué)了一點知識,多用了一點心而已。接下來我給大家分享關(guān)于數(shù)學(xué)七年級下冊知識,希望對大家有所幫助!
數(shù)學(xué)七年級下冊知識1
相交線與平行線
一、相交線 兩條直線相交,形成4個角。
1、兩條直線相交所成的四個角中,相鄰的兩個角叫做鄰補角,特點是兩個角共用一條邊,另一條邊互為反向延長線,性質(zhì)是鄰補角互補;相對的兩個角叫做對頂角,特點是它們的兩條邊互為反向延長線。性質(zhì)是對頂角相等。
①鄰補角:兩個角有一條公共邊,它們的另一條邊互為反向延長線。具有這種關(guān)系的兩個角,互為鄰補角。如:∠1、∠2。
②對頂角:兩個角有一個公共頂點,并且一個角的兩條邊,分別是另一個角的兩條邊的反向延長線,具有這種關(guān)系的兩個角,互為對頂角。如:∠1、∠3。
③對頂角相等。
二、垂線
1.垂直:如果兩條直線相交成直角,那么這兩條直線互相垂直。
2.垂線: 垂直是相交的一種特殊情形,兩條直線垂直,其中一條直線叫做另一條直線的垂線。
3.垂足:兩條垂線的交點叫垂足。
4.垂線特點:過一點有且只有一條直線與已知直線垂直。
5.點到直線的距離: 直線外一點到這條直線的垂線段的長度,叫點到直線的距離。連接直線外一點與直線上各點的所有線段中,垂線段最短。
圖片 圖片
三、同位角、內(nèi)錯角、同旁內(nèi)角
兩條直線被第三條直線所截形成8個角。
1.同位角:(在兩條直線的同一旁,第三條直線的同一側(cè))在兩條直線的上方,又在直線EF的同側(cè),具有這種位置關(guān)系的兩個角叫同位角。如:∠1和∠5。
2.內(nèi)錯角:(在兩條直線內(nèi)部,位于第三條直線兩側(cè))在兩條直線之間,又在直線EF的兩側(cè),具有這種位置關(guān)系的兩個角叫內(nèi)錯角。如:∠3和∠5。
3.同旁內(nèi)角:(在兩條直線內(nèi)部,位于第三條直線同側(cè))在兩條直線之間,又在直線EF的同側(cè),具有這種位置關(guān)系的兩個角叫同旁內(nèi)角。如:∠3和∠6。
四、平行線及其判定
平行線
1.平行:兩條直線不相交?;ハ嗥叫械膬蓷l直線,互為平行線。a∥b(在同一平面內(nèi),不相交的兩條直線叫做平行線。)
2.平行公理:經(jīng)過直線外一點,有且只有一條直線與這條直線平行。
3.平行公理推論:平行于同一直線的兩條直線互相平行。如果b//a,c//a,那么b//c
平行線的判定:
1. 兩條平行線被第三條直線所截,如果同位角相等,那么這兩條直線平行。(同位角相等,兩直線平行)
2. 兩條平行線被第三條直線所截,如果內(nèi)錯角相等,那么這兩條直線平行。(內(nèi)錯角相等,兩直線平行)
3. 兩條平行線被第三條直線所截,如果同旁內(nèi)角互補,那么這兩條直線平行。(同旁內(nèi)角互補,兩直線平行)滲消
推論:在同一平面內(nèi),如果兩條直線都垂直于同一條直線,那么這兩條直線平行。
平行線的性質(zhì)
(一)平行線的性質(zhì)
1.兩條平行線被第三條直線所截,同位角相等。(兩直線平行,同位角相等)
2.兩條平行線被第三條直線所截,內(nèi)錯角相等。(兩直線平行,內(nèi)錯角相等)
3.兩條平行線被第三叢鬧知條直線所截,同旁內(nèi)角互補。(兩直線平行,同旁內(nèi)角相等)
(二)命題、定理、證明
1.命題的概念:判斷一件事情的語句,叫做命題。
2.命題的組成:每個命題都是題設(shè)、結(jié)論兩部分組成。
題設(shè)是已知事項;結(jié)論是由已知事項推出的事項。命題常寫成“如果??,那么??”的形式。具有這種形式的命題中,用“如果”開始的部分是題設(shè),用“那么”開始的部分是結(jié)論。
3.真命題:正確的命題,題設(shè)成立,結(jié)論一定成立。
4.假命題:錯誤彎擾的命題,題設(shè)成立,不能保證結(jié)論一定成立。
5.定理:經(jīng)過推理證實得到的真命題。(定理可以做為繼續(xù)推理的依據(jù))
6.證明:推理的過程叫做證明。
平移
1.平移:平移是指在平面內(nèi),將一個圖形沿著某個方向移動一定的距離,這樣的圖形運動叫做平移變換 (簡稱平移),平移不改變物體的形狀和大小。
2.平移的性質(zhì)
①把一個圖形整體沿某一直線方向移動,會得到一個新的圖形,新圖形與原圖形的形狀和大小完全相同。
②新圖形中的每一點,都是由原圖形中的某一點移動后得到的,這兩個點是對應(yīng)點。連接各組對應(yīng)點的線段平行且相等。
數(shù)學(xué)七年級下冊知識2
平面直角坐標(biāo)系
一、平面直角坐標(biāo)系
有序數(shù)對
1.有序數(shù)對:用兩個數(shù)來表示一個確定的位置,其中兩個數(shù)各自表示不同的意義,我們把這種有順序的兩個數(shù)組成的數(shù)對,叫做有序數(shù)對,記作(a,b)
2.坐標(biāo):數(shù)軸(或平面)上的點可以用一個數(shù)(或數(shù)對)來表示,這個數(shù)(或數(shù)對)叫做這個點的坐標(biāo)。
平面直角坐標(biāo)系
1.平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直,并且有公共原點的數(shù)軸。這樣我們就說在平面上建立了平面直角坐標(biāo)系,簡稱直角坐標(biāo)系。
2.X軸:水平的數(shù)軸叫X軸或橫軸。向右方向為正方向。
3.Y軸:豎直的數(shù)軸叫Y軸或縱軸。向上方向為正方向。
4.原點:兩個數(shù)軸的交點叫做平面直角坐標(biāo)系的原點。
對應(yīng)關(guān)系:平面直角坐標(biāo)系內(nèi)的點與有序?qū)崝?shù)對一一對應(yīng)。
坐標(biāo):對于平面內(nèi)任一點P,過P分別向x軸,y軸作垂線,垂足分別在x軸,y軸上,對應(yīng)的數(shù)a,b分別叫點P的橫坐標(biāo)和縱坐標(biāo)。
象限
1.象限:X軸和Y軸把坐標(biāo)平面分成四個部分,也叫四個象限。右上面的叫做第一象限,其他三個部分按逆時針方向依次叫做第二象限、第三象限和第四象限。象限以數(shù)軸為界,橫軸、縱軸上的點及原點不屬于任何象限。一般,在x軸和y軸取相同的單位長度。
2.象限的特點:
1、特殊位置的點的坐標(biāo)的特點:
(1)x軸上的點的縱坐標(biāo)為零;y軸上的點的橫坐標(biāo)為零。
(2)第一、三象限角平分線上的點橫、縱坐標(biāo)相等;
第二、四象限角平分線上的點橫、縱坐標(biāo)互為相反數(shù)。
(3)在任意的兩點中,如果兩點的橫坐標(biāo)相同,則兩點的連線平行于縱軸;如果兩點的縱坐標(biāo)相同,則兩點的連線平行于橫軸。
2、點到軸及原點的距離:
點到x軸的距離為|y|;
點到y(tǒng)軸的距離為|x|;
點到原點的距離為x的平方加y的平方再開根號;
3、三大規(guī)律
(1)平移規(guī)律:
點的平移規(guī)律
左右平移→縱坐標(biāo)不變,橫坐標(biāo)左減右加;
上下平移→橫坐標(biāo)不變,縱坐標(biāo)上加下減。
圖形的平移規(guī)律 找特殊點
(2)對稱規(guī)律
關(guān)于x軸對稱→橫坐標(biāo)不變,縱坐標(biāo)互為相反數(shù);
關(guān)于y軸對稱→橫坐標(biāo)互為相反數(shù),縱坐標(biāo)不變;
關(guān)于原點對稱→橫縱坐標(biāo)都互為相反數(shù)。
(3)位置規(guī)律
各象限點的坐標(biāo)符號:(注意:坐標(biāo)軸上的點不屬于任何一個象限)
圖片
二、坐標(biāo)方法的簡單應(yīng)用
用坐標(biāo)表示地理位置的過程:
1.建立坐標(biāo)系,選擇一個合適的參照點為原點,確定X軸和Y軸的正方向。
2.根據(jù)具體問題確定適當(dāng)?shù)谋壤撸谧鴺?biāo)軸上標(biāo)出單位長度。
3.在坐標(biāo)平面內(nèi)畫出這些點,寫出各點的坐標(biāo)和各個地點的名稱。
用坐標(biāo)表示平移
在平面直角坐標(biāo)系內(nèi),如果把一個圖形各個點的橫坐標(biāo)都加(或減去)一個正數(shù)a,相應(yīng)的新圖形就把原圖形向右(左)平移a個單位長度;如果把它各個點的縱坐標(biāo)都加(或減去) 一個正數(shù)a,相應(yīng)的新圖形就把原圖形向上(下)平移a個單位長度。
用坐標(biāo)表示地理位置的過程:
1.建立坐標(biāo)系,選擇一個合適的參照點為原點,確定X軸和Y軸的正方向。
2.根據(jù)具體問題確定適當(dāng)?shù)谋壤撸谧鴺?biāo)軸上標(biāo)出單位長度。
3.在坐標(biāo)平面內(nèi)畫出這些點,寫出各點的坐標(biāo)和各個地點的名稱。
用坐標(biāo)表示平移
在平面直角坐標(biāo)系內(nèi),如果把一個圖形各個點的橫坐標(biāo)都加(或減去)一個正數(shù)a,相應(yīng)的新圖形就把原圖形向右(左)平移a個單位長度;如果把它各個點的縱坐標(biāo)都加(或減去) 一個正數(shù)a,相應(yīng)的新圖形就把原圖形向上(下)平移a個單位長度。
數(shù)學(xué)七年級下冊知識3
不等式與不等式組
一、不等式
不等式及其解集
1.不等式:用不等號(包括:>、圖片、圖片、<、≠)表示大小關(guān)系的式子。
2.不等式的解:使不等式成立的未知數(shù)的值,叫不等式的解。
3.不等式的解集:一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。
不等式的性質(zhì):
性質(zhì)1:如果a>b,b>c,那么a>c(不等式的傳遞性).
性質(zhì)2:不等式的兩邊同加(減)同一個數(shù)(或式子),不等號的方向不變。如果a>b,那么a+c>b+c(不等式的可加性).
性質(zhì)3: 不等式的兩邊同乘(除以)同一個正數(shù),不等號的方向不變。不等式的兩邊同乘(除以)同一個負(fù)數(shù),不等號的方向改變。
如果a>b,c>0,那么ac>bc;如果a>b,c<0,ac
性質(zhì)4:如果a>b,c>d,那么a+c>b+d. (不等式的加法法則)
性質(zhì)5:如果a>b>0,c>d>0,那么ac>bd. (可乘性)
性質(zhì)6:如果a>b>0,n∈N,n>1,那么an>bn,且.當(dāng)0
二、一元一次不等式
1.一元一次不等式:含有一個未知數(shù),未知數(shù)的次數(shù)是1的不等式。
2、不等式的解法:
步驟:去分母,去括號,移項,合并同類項,系數(shù)化為一;
注意:去分母與系數(shù)化為一要特別小心,因為要在不等式兩端同時乘或除以某一個數(shù),要考慮不等號的方向是否發(fā)生改變的問題。
三、一元一次不等式組
1.一元一次不等式組:一般地,關(guān)于同一未知數(shù)的幾個一元一次不等式合在一起,就組成了一個一元一次不等式組。
2.不等式組的解:幾個不等式的解集的公共部分,叫做由它們組成的不等式組的解集。解不等式組就是求它的解集。
3.解不等式組:先求出其中各不等式的解集,再求出這些解集的公共部分,利用數(shù)軸可以直觀地表示不等式的解集。
解一元一次不等式組的一般方法:
以兩條不等式組成的不等式組為例,
①若兩個未知數(shù)的解集在數(shù)軸上表示同向左,就取在左邊的未知數(shù)的解集為不等式組的解集,此乃“同小取小”
②若兩個未知數(shù)的解集在數(shù)軸上表示同向右,就取在右邊的未知數(shù)的解集為不等式組的解集,此乃“同大取大”
③若兩個未知數(shù)的解集在數(shù)軸上相交,就取它們之間的值為不等式組的解集。若x表示不等式的解集,此時一般表示為a<x<b,或a≤x≤b。此乃“相交取中
④若兩個未知數(shù)的解集在數(shù)軸上向背,那么不等式組的解集就是空集,不等式組無解。此乃“向背取空”不等式組的解集的確定方法(a>b)
數(shù)學(xué)七年級下冊知識點相關(guān)文章:
★初一數(shù)學(xué)下冊知識點
★初中數(shù)學(xué)七年級下冊知識點提綱
★七年級下數(shù)學(xué)知識點總結(jié)
★初一數(shù)學(xué)下冊知識點歸納總結(jié)
★七年級下冊數(shù)學(xué)復(fù)習(xí)提綱
★初一數(shù)學(xué)下冊基本知識點總結(jié)
★七年級下冊數(shù)學(xué)的知識點
★初一數(shù)學(xué)下冊知識點匯總
★初一下期數(shù)學(xué)知識點總結(jié)
★七年級數(shù)學(xué)下冊知識點總結(jié)
這篇文章我給大家梳理匯總了七年級下冊數(shù)學(xué)知識點,一起看一下具體內(nèi)容,供參考。
概率
1.一般地,在大量重復(fù)試驗中,如果事件A發(fā)生的頻率n/m會穩(wěn)定在某個常數(shù)p附近,那么這個常數(shù)p就叫做事件A的概率。
2.隨機事件:在一定的條件下可能發(fā)生也可能不發(fā)生的事件,叫做隨機事件。
3.互斥事件:不可能同時發(fā)生的兩個事件叫做互斥事件。
4.對立事件:即必有一個發(fā)生的互斥事件叫做對立事件。
5.必然事件:那些無需通過實驗就能夠預(yù)先確定它們在每一次實驗中都一定會發(fā)生的事件稱為必然事件。
6.不可能事件:那些在每一次實驗中都一定不會發(fā)生的事件稱為不可能事件。
相交線與平行線
1.相交線
在同一平面內(nèi),兩條直線的位置關(guān)系有相交和平行兩種。如果兩條直線只有一個公共點時,稱這兩條直線相交。
2.垂線
當(dāng)兩條直線相交所成的四個角中,有一個角是直角時,即兩條直線互相垂直,其中一條直線叫做另一直線的垂線,交點叫垂足。拆唯帶
3.同位角
兩條直線a,b被第三條直線c所截(或說a,b相交c),在截線c的同旁,被截兩直線a,b的同一側(cè)的角,我們把這樣的兩個角稱為同位角。
4.內(nèi)錯角
兩條直線被第三條直線所截,兩個角分別在截線的兩側(cè),且夾在兩條被截直線之間,具有這樣位置關(guān)系的一對角叫做內(nèi)錯角。
5.同旁內(nèi)角
兩條直線被第三條直線所截,在截線同旁,且在被截線之內(nèi)的兩角,叫做同旁內(nèi)角。
6.平行線
幾何中,在同一平面內(nèi),永不相交(也永不重合)的兩條直線叫做平行線。
平行線的性質(zhì):①兩直線平行,同位角相等;②兩直線平行,內(nèi)錯角相等;③兩直線平行,同旁內(nèi)角互補。
7.平移
平移,是指在旅蘆同一平面內(nèi),將一個圖形上的所有點都按照某個直線方向做相同距離的移動,這樣的圖形運動叫做圖形的平移運動,簡稱平移。
平面直角坐標(biāo)系
1.定義:平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標(biāo)系。水平的數(shù)軸稱為x軸或橫軸,習(xí)慣上取向右為正方向;豎直的數(shù)軸稱為y軸或縱軸,取向上方向為正方向;兩坐標(biāo)軸的交點為平面直角坐標(biāo)系的原點。
2.平面上的任意一點都可以用一個有序數(shù)對來表示,記為(a,b),a是橫坐標(biāo),b是縱坐標(biāo)。
3.原點的坐標(biāo)是(0,0);
縱坐標(biāo)相同的點的連線平行于x軸;
橫坐標(biāo)相同的點的連線平行于y軸;
x軸上的點的縱坐標(biāo)為0,表示為(x,0);
y軸上的點的橫坐標(biāo)為0,表示為(0,y)。
4.建立了平面直角坐標(biāo)系以后,坐標(biāo)平面就被兩條坐標(biāo)軸分為了Ⅰ、Ⅱ、Ⅲ、Ⅳ四個部分,分別叫做第一象限、第二象限、第三象限山緩和第四象限。坐標(biāo)軸上的點不屬于任何象限。
5.幾個象限內(nèi)點的特點:
第一象限(+,+);第二象限(—,+);
第三象限(—,—);第四象限(+,—)。
6.(x,y)關(guān)于原點對稱的點是(—x,—y);
(x,y)關(guān)于x軸對稱的點是(x,—y);
(x,y)關(guān)于y軸對稱的點是(—x,y)。
7.點到兩軸的距離:點P(x,y)到x軸的距離是︱y︳;
點P(x,y)到y(tǒng)軸的距離是︱x︳。
8.在第一、三象限角平分線上的點的坐標(biāo)是(m,m);
在第二、四象限叫平分線上的點的坐標(biāo)是(m,—m)。
數(shù)據(jù)的收集與整理
用直方圖描述數(shù)據(jù)的步驟(即做直方圖的步驟)
1.計算最大值與最小值的差。
2.決定組距與組數(shù)
原則:當(dāng)數(shù)據(jù)在100個以內(nèi)時,按照數(shù)據(jù)的多少,分成5~12組。
組距:把所有的數(shù)據(jù)分成若干組,每個小組的兩個端點之間的距離(組內(nèi)數(shù)據(jù)的取值范圍)。
3.列頻數(shù)分布表
頻數(shù):各小組內(nèi)數(shù)據(jù)的個數(shù)稱為頻數(shù)。
4.畫頻數(shù)分布直方圖。
5.小長方形的面積表示頻數(shù)??v軸為。等距分組時,通常直接用小長方形的高表示頻數(shù),即縱軸為“頻數(shù)”。
6.頻數(shù)分布折線圖。根據(jù)頻數(shù)分布圖畫出頻數(shù)分布折線圖:
①取每個小長方形的上邊的中點,以及x軸上與最左、最右直方相距半個組距的點。②連線。
《人教灶則隱盯沒版初中數(shù)學(xué)7年級下冊全套教隱廳學(xué)資料.rar》免費資源
鏈接:1mkaQhWUT9852BAOdv6M06A
七年級下冊數(shù)學(xué)知識點(性質(zhì).定理.概念) <北師大版>
第一章 整式的運算
一. 整式
※1. 單項式
①由數(shù)與字母的積組成的代數(shù)式叫做單項式。單獨一個數(shù)或字母也是單項式。
②單項式的系數(shù)是這個單項式的數(shù)字因數(shù),作為單項式的系數(shù),必須連同數(shù)字前面的性質(zhì)符號,如果一個單項式只是字母的積,并非沒有系數(shù).
③一個單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù).
※2.多項式
①幾個單項式的和叫做多項式.在多項式中,每個單項式叫做多項式的項.其中,不含字母的項叫做常數(shù)項.一個多項式中,次數(shù)最高項的次數(shù),叫做這個多項式的次數(shù).
②單項式和多項式都有次數(shù),含有字母的單項式有系數(shù),多項式?jīng)]有系數(shù).多項式的每一項都是單項式,一個多項式的項數(shù)就是這個多項式作為加數(shù)的單項式的個數(shù).多項式中每一項都有它們各自的次數(shù),但是它們的次數(shù)不可能都作是為這個多項式的次數(shù),一個多項式的次數(shù)只有一個,它是所含各項的次數(shù)中最高的那一項次數(shù).
※3.整式單項式和多項式統(tǒng)稱為整式.
二. 整式的加減
¤1. 整式的加減實質(zhì)上就是去括號后,合并同類項,運算結(jié)果是一個多項式或是單項式.
¤2. 括號前面是“-”號,去括號時,括號內(nèi)各項要變號,一個數(shù)與多項式相乘時,這個數(shù)與括號內(nèi)各項都要相乘.
三. 同底數(shù)冪的乘法
※同底數(shù)冪的乘法法則: (m,n都是正數(shù))是冪的運算中最基本的法則,在應(yīng)用法則運算時,要注意以下幾點:
①法則使用的前提條件是:冪的底數(shù)相同而且是相乘時,底數(shù)a可以是一個具體的數(shù)字式字母,也可以是一個單項或多項式;
②唯明指數(shù)是1時,不要誤以為沒有指數(shù);
③不要將同底數(shù)冪的乘法與整式的加法相混淆,對乘法,只要底數(shù)相同指數(shù)就可以相加;而對于加法,不僅底數(shù)相同,還要求指數(shù)相同才能相加;
④當(dāng)三個或三個以上同底數(shù)冪相乘時,法則可推廣為 (其中m、n、p均為正數(shù));
⑤公式還可以逆用: (m、n均為正整數(shù))
四.冪的乘方與積的乘方
※1. 冪的乘方法則: (m,n都是正數(shù))是冪的乘法法則為基礎(chǔ)推導(dǎo)出來的,但兩者不能混淆.
※2. .
※3. 底數(shù)有負(fù)號時,運算時要注意,底數(shù)是a與(-a)時不是同底,但可以利用乘方法則化成同底,
如將(-a)3化成-a3
※4.底數(shù)有時形式不同,但可以化成相同。
※5.要注意區(qū)別(ab)n與(a+b)n意義是不同的,不要誤以為(a+b)n=an+bn(a、b均不為零)。
※6.積的乘方法則:積的乘方,等于把積每一個因式分別乘方,再把所得的冪相乘,即 (n為正整數(shù))。
※7.冪的乘方與積乘方法則均可逆向運用。
五. 同底數(shù)冪的除法
※1. 同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即 (a≠0,m、n都是正數(shù),且m>n).
※2. 在應(yīng)用時需要注意以下幾點:
①法則使用的前提條件是“同底數(shù)冪相除”而且0不能做除數(shù),所以法則中a≠0.
②任何不等于0的數(shù)的0次冪等于1,即 ,如 ,(-2.50=1),則00無意義.
③任何不等于0的數(shù)的-p次冪(p是正整數(shù)),等于這個數(shù)的p的次冪的倒數(shù),即 ( a≠0,p是正整數(shù)), 而0-1,0-3都是無意義的;當(dāng)a>0時,a-p的值一定是正的; 當(dāng)a<0時,a-p的值可能是正也可能是負(fù)的,如 ,
④運算要注意運算順序.
六. 整式的乘法
※1. 單項式乘法法則:單項式相乘,把它們的系數(shù)、相同字母分別相乘,對于只在一個單項式里含有的字母,連同它的指數(shù)作為積的一個因式。
單項式乘法法則在運用時要注意以下幾點:
①積的系數(shù)等于各因式系數(shù)積,先確定符號,再計算絕對值。這時容易出現(xiàn)的錯誤的是,將系數(shù)相乘與指數(shù)相加混淆;
②相同字母相乘,運用同底數(shù)的乘法法則;
③只在一個單項式里含有的字母,要連同它的指數(shù)作為積的一個因式;
④單項式乘法法則對于三個以上的單項式相乘同樣適用;
⑤單項式乘以單項式,結(jié)果仍是一個單項式。
※2.單項式與多項式相乘
單項式乘以多項式,咐畝是通過乘法對加法的分配律,把它轉(zhuǎn)化為指簡告單項式乘以單項式,即單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。
單項式與多項式相乘時要注意以下幾點:
①單項式與多項式相乘,積是一個多項式,其項數(shù)與多項式的項數(shù)相同;
②運算時要注意積的符號,多項式的每一項都包括它前面的符號;
③在混合運算時,要注意運算順序。
※3.多項式與多項式相乘
多項式與多項式相乘,先用一個多項式中的每一項乘以另一個多項式的每一項,再把所得的積相加。
多項式與多項式相乘時要注意以下幾點:
①多項式與多項式相乘要防止漏項,檢查的方法是:在沒有合并同類項之前,積的項數(shù)應(yīng)等于原兩個多項式項數(shù)的積;
②多項式相乘的結(jié)果應(yīng)注意合并同類項;
③對含有同一個字母的一次項系數(shù)是1的兩個一次二項式相乘 ,其二次項系數(shù)為1,一次項系數(shù)等于兩個因式中常數(shù)項的和,常數(shù)項是兩個因式中常數(shù)項的積。對于一次項系數(shù)不為1的兩個一次二項式(mx+a)和(nx+b)相乘可以得到
七.平方差公式
¤1.平方差公式:兩數(shù)和與這兩數(shù)差的積,等于它們的平方差,
※即 。
¤其結(jié)構(gòu)特征是:
①公式左邊是兩個二項式相乘,兩個二項式中第一項相同,第二項互為相反數(shù);
②公式右邊是兩項的平方差,即相同項的平方與相反項的平方之差。
八.完全平方公式
¤1. 完全平方公式:兩數(shù)和(或差)的平方,等于它們的平方和,加上(或減去)它們的積的2倍,
¤即 ;
¤口決:首平方,尾平方,2倍乘積在中央;
¤2.結(jié)構(gòu)特征:
①公式左邊是二項式的完全平方;
②公式右邊共有三項,是二項式中二項的平方和,再加上或減去這兩項乘積的2倍。
¤3.在運用完全平方公式時,要注意公式右邊中間項的符號,以及避免出現(xiàn) 這樣的錯誤。
九.整式的除法
¤1.單項式除法單項式
單項式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式;
¤2.多項式除以單項式
多項式除以單項式,先把這個多項式的每一項除以單項式,再把所得的商相加,其特點是把多項式除以單項式轉(zhuǎn)化成單項式除以單項式,所得商的項數(shù)與原多項式的項數(shù)相同,另外還要特別注意符號。
第二章 平行線與相交線
一.臺球桌面上的角
※1.互為余角和互為補角的有關(guān)概念與性質(zhì)
如果兩個角的和為90°(或直角),那么這兩個角互為余角;
如果兩個角的和為180°(或平角),那么這兩個角互為補角;
注意:這兩個概念都是對于兩個角而言的,而且兩個概念強調(diào)的是兩個角的數(shù)量關(guān)系,與兩個角的相互位置沒有關(guān)系。
它們的主要性質(zhì):同角或等角的余角相等;
同角或等角的補角相等。
二.探索直線平行的條件
※兩條直線互相平行的條件即兩條直線互相平行的判定定理,共有三條:
①同位角相等,兩直線平行;
②內(nèi)錯角相等,兩直線平行;
③同旁內(nèi)角互補,兩直線平行。
三.平行線的特征
※平行線的特征即平行線的性質(zhì)定理,共有三條:
①兩直線平行,同位角相等;
②兩直線平行,內(nèi)錯角相等;
③兩直線平行,同旁內(nèi)角互補。
四.用尺規(guī)作線段和角
※1.關(guān)于尺規(guī)作圖
尺規(guī)作圖是指只用圓規(guī)和沒有刻度的直尺來作圖。
※2.關(guān)于尺規(guī)的功能
直尺的功能是:在兩點間連接一條線段;將線段向兩方向延長。
圓規(guī)的功能是:以任意一點為圓心,任意長度為半徑作一個圓;以任意一點為圓心,任意長度為半徑畫一段弧。
第三章生活中的數(shù)據(jù)
※1.科學(xué)記數(shù)法:對任意一個正數(shù)可能寫成a×10n的形式,其中1≤a<10,n是整數(shù),這種記數(shù)的方法稱為科學(xué)記數(shù)法。
¤2.利用四舍五入法取一個數(shù)的近似數(shù)時,四舍五入到哪一位,就說這個近似數(shù)精確到哪一位;對于一個近似數(shù),從左邊第一個不是0的數(shù)字起,到精確到的數(shù)位止,所有的數(shù)字都叫做這個數(shù)的有效數(shù)字。
¤3.統(tǒng)計工作包括:
①設(shè)定目標(biāo);②收集數(shù)據(jù);③整理數(shù)據(jù);④表達(dá)與描述數(shù)據(jù);⑤分析結(jié)果。
第四章 概率
¤1.隨機事件發(fā)生與不發(fā)生的可能性不總是各占一半,都為50%。
※2.現(xiàn)實生活中存在著大量的不確定事件,而概率正是研究不確定事件的一門學(xué)科。
※3.了解必然事件和不可能事件發(fā)生的概率。
必然事件發(fā)生的概率為1,即P(必然事件)=1;不可能事件發(fā)生的概率為0,即P(不可能事件)=0;如果A為不確定事件,那么0
※4.了解幾何概率這類問題的計算方法
事件發(fā)生概率=
第五章 三角形
一.認(rèn)識三角形
1.關(guān)于三角形的概念及其按角的分類
由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
這里要注意兩點:
①組成三角形的三條線段要“不在同一直線上”;如果在同一直線上,三角形就不存在;
②三條線段“首尾是順次相接”,是指三條線段兩兩之間有一個公共端點,這個公共端點就是三角形的頂點。
三角形按內(nèi)角的大小可以分為三類:銳角三角形、直角三角形、鈍角三角形。
2.關(guān)于三角形三條邊的關(guān)系
根據(jù)公理“連結(jié)兩點的線中,線段最短”可得三角形三邊關(guān)系的一個性質(zhì)定理,即三角形任意兩邊之和大于第三邊。
三角形三邊關(guān)系的另一個性質(zhì):三角形任意兩邊之差小于第三邊。
對于這兩個性質(zhì),要全面理解,掌握其實質(zhì),應(yīng)用時才不會出錯。
設(shè)三角形三邊的長分別為a、b、c則:
①一般地,對于三角形的某一條邊a來說,一定有|b-c|<a<b+c成立;反之,只有|b-c|<a<b+c成立,a、b、c三條線段才能構(gòu)成三角形;
②特殊地,如果已知線段a最大,只要滿足b+c>a,那么a、b、c三條線段就能構(gòu)成三角形;如果已知線段a最小,只要滿足|b-c|<a,那么這三條線段就能構(gòu)成三角形。
3.關(guān)于三角形的內(nèi)角和
三角形三個內(nèi)角的和為180°
①直角三角形的兩個銳角互余;
②一個三角形中至多有一個直角或一個鈍角;
③一個三角中至少有兩個內(nèi)角是銳角。
4.關(guān)于三角形的中線、高和中線
①三角形的角平分線、中線和高都是線段,不是直線,也不是射線;
②任意一個三角形都有三條角平分線,三條中線和三條高;
③任意一個三角形的三條角平分線、三條中線都在三角形的內(nèi)部。但三角形的高卻有不同的位置:銳角三角形的三條高都在三角形的內(nèi)部,如圖1;直角三角形有一條高在三角形的內(nèi)部,另兩條高恰好是它兩條邊,如圖2;鈍角三角形一條高在三角形的內(nèi)部,另兩條高在三角形的外部,如圖3。
④一個三角形中,三條中線交于一點,三條角平分線交于一點,三條高所在的直線交于一點。
二.圖形的全等
¤能夠完全重合的圖形稱為全等形。全等圖形的形狀和大小都相同。只是形狀相同而大小不同,或者說只是滿足面積相同但形狀不同的兩個圖形都不是全等的圖形。
四.全等三角形
¤1.關(guān)于全等三角形的概念
能夠完全重合的兩個三角形叫做全等三角形?;ハ嘀睾系捻旤c叫做對應(yīng)點,互相重合的邊叫做對應(yīng)邊,互相重合的角叫做對應(yīng)角
所謂“完全重合”,就是各條邊對應(yīng)相等,各個角也對應(yīng)相等。因此也可以這樣說,各條邊對應(yīng)相等,各個角也對應(yīng)相等的兩個三角形叫做全等三角形。
※2.全等三角形的對應(yīng)邊相等,對應(yīng)角相等。
¤3.全等三角形的性質(zhì)經(jīng)常用來證明兩條線段相等和兩個角相等。
五.探三角形全等的條件
※1.三邊對應(yīng)相等的兩個三角形全等,簡寫為“邊邊邊”或“SSS”
※2.有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等,簡寫成“邊角邊”或“SAS”
※3.兩角和它們的夾邊對應(yīng)相等的兩個三角形全等,簡寫成“角邊角”或“ASA”
※4.兩角和其中一個角的對邊對應(yīng)相等的兩個三角形全等,簡寫成“角角邊”或“AAS”
六.作三角形
1.已知兩個角及其夾邊,求作三角形,是利用三角形全等條件“角邊角”即(“ASA”)來作圖的。
2.已知兩條邊及其夾角,求作三角形,是利用三角形全等條件“邊角邊”即(“SAS”)來作圖的。
3.已知三條邊,求作三角形,是利用三角形全等條件“邊邊邊”即(“SSS”)來作圖的。
八.探索直三角形全等的條件
※1.斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等。簡稱為“斜邊、直角邊”或“HL”。這只對直角三角形成立。
※2.直角三角形是三角形中的一類,它具有一般三角形的性質(zhì),因而也可用“SAS”、“ASA”、“AAS”、“SSS”來判定。
直角三角形的其他判定方法可以歸納如下:
①兩條直角邊對應(yīng)相等的兩個直角三角形全等;
②有一個銳角和一條邊對應(yīng)相等的兩個直角三角形全等。
③三條邊對應(yīng)相等的兩個直角三角形全等。
第七章 生活中的軸對稱
※1.如果一個圖形沿某條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。
※2.角平分線上的點到角兩邊距離相等。
※3.線段垂直平分線上的任意一點到線段兩個端點的距離相等。
※4.角、線段和等腰三角形是軸對稱圖形。
※5.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為“三線合一”。
※6.軸對稱圖形上對應(yīng)點所連的線段被對稱軸垂直平分。
※7.軸對稱圖形上對應(yīng)線段相等、對應(yīng)角相等。
(注:※表示重點部分;¤表示了解部分;◎表示僅供參閱部分;)
那么,粗和唯怎樣才能學(xué)好七年級數(shù)學(xué)呢?不妨嘗試以下幾種做法。 1.概念學(xué)習(xí)很重要 概念是初中數(shù)學(xué)的靈魂,每一個概念都是對實際問題或具體數(shù)學(xué)對象的抽象和概括。數(shù)學(xué)的許多概念,它們之間既有聯(lián)系又有區(qū)別。在學(xué)習(xí)中,要注意歸類、比較、分析概念的從屬關(guān)系,區(qū)分它們的異同。 2.課堂學(xué)棚睜習(xí)主渠道 3.完成作業(yè)求規(guī)范 做作業(yè)前要先復(fù)習(xí)課本內(nèi)容,用學(xué)過的知識解答習(xí)題。做題時認(rèn)真審題,弄清題意,確定解題方法與步驟;參照例題的書寫格式和步驟,規(guī)范解題過程,書寫也要工整清楚。 4.解題過程重思考 解題是數(shù)學(xué)學(xué)習(xí)的有巖培機組成部分,是學(xué)好數(shù)學(xué)的必要條件。有的學(xué)生盲目追求解題數(shù)量,不求質(zhì)量,因而解題能力和學(xué)習(xí)成績得不到提高,應(yīng)該注重解題后的反思與總結(jié),反思自己的思維過程,總結(jié)各種解法的優(yōu)劣,對知識技能、各種方法進行縱橫聯(lián)系,從而提高自己的解題能力。 您只要在七年級打好堅實的基礎(chǔ),掌握適合自己的學(xué)習(xí)方法,就一定能在初中階段的學(xué)習(xí)中乘風(fēng)破浪,走向成功。讀者對七年級數(shù)學(xué)下(北京師大版)中學(xué)教材全解的最新評論: 當(dāng)當(dāng)網(wǎng)用戶妮妮90: 兒子一直在用,對學(xué)習(xí)成績提高有用。當(dāng)當(dāng)網(wǎng)用戶瑪莉夢菲: 很實用。非常喜歡?。‘?dāng)當(dāng)網(wǎng)用戶Manaka: 很不錯的東西,學(xué)習(xí)幫助很大哦! 熱門書籍推薦: