目錄高一數(shù)學(xué)函數(shù)題100道 高一數(shù)學(xué)應(yīng)用大題 高一函數(shù)20道大題及答案 高一數(shù)學(xué)函數(shù)解答題 高一數(shù)學(xué)函數(shù)經(jīng)典題目及答案
解:f(x)=sin2x+√3cos2x=2sin(2x+π/3)
所以最小正周期T=2π/w=2π/2=π
當(dāng)2kπ-π/2≤2x+π/3≤2kπ+π/2時(shí)
解得:kπ-5π/12≤x≤kπ+π/12為增函數(shù)
當(dāng)2kπ+π/2≤2x+π/3≤2kπ+3π/2時(shí)
解得:kπ+π/12≤x≤kπ+7π/12為減函數(shù)襪談沖
又x為[0,π/2]時(shí),所以2x+π/3為[π/3,4π/3]
當(dāng)2x+π/3=π/2,即x=π/12時(shí) f(x)取得最大值為2
當(dāng)2x+π/3=4π/3,即x=π/2時(shí)侍鄭 f(x)取得最小值為-√告殲3
(1)將x=0,x=-1分別帶入已知式計(jì)算得春仿虛到大辯f(1)=1,f(-1)=3,
又由扒燃f(0)=1 ,函數(shù)為二次函數(shù),可設(shè)其為f(x)=ax*x+bx+c=0
帶入解得c=1,a=1/2,b=-3/2
f(x)=1/2x*x-3/2x+1
(2)m 最小值為f(1)=-2 m<-2 1.f(x)=ax^5-bx+2 f(-x)=a(-x)^5-b(-x)+2= -ax^5+bx+2, f(x)+f(-x)=4 ∵f(-3)=1,∴f(3)=3; 2.∵f(x)是定義在(-1,1)上的奇函數(shù), ∴f(1-a)+f(2a-1)<0可化為 f(1-a)< -f(2a-1) f(1-a)< f(-2a+1), 又閉咐∵f(x)在(-1,1)上為減函數(shù),高一函數(shù)20道大題及答案