目錄初一二數(shù)學(xué)知識點總結(jié) 初一數(shù)學(xué)數(shù)軸知識點總結(jié) 初一上下冊數(shù)學(xué)知識點總結(jié) 初一數(shù)學(xué)的所有知識點總結(jié) 初中1數(shù)學(xué)知識點總結(jié)
初一數(shù)學(xué)知識點總結(jié)1
1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2.三角形的分類
3.三角形的三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。
4.高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
5.中線:在三角形中,連粗亂接一個頂點和它的對邊中點的線段叫做三角形的中線。
6.角平分線:三角形的一個內(nèi)角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
7.高線、中線、角平分線的意義和做法
8.三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個性質(zhì)叫三角形的穩(wěn)定性。
9.三角形內(nèi)角和定理:三角形三個內(nèi)角的和等于180°
推論1直角三角形的兩個銳角互余;
推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角和;
推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;
三角形的內(nèi)角和是外角和的一半。
10.三角形的外角:三角形的一條邊與另一條邊延長線的夾角,叫做三角形的外角。
11.三角形外角的性質(zhì)
(1)頂點是三角形的一個頂點,一邊是三角形的一邊,另一邊是三角形的一邊的延長線;
(2)三角形的一個外角等于與它不相鄰的兩個內(nèi)角和;
(3)三角形的一個外角大于與它不相鄰的任一內(nèi)角;
(4)三角形的外角和是360°。
12.多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。
13.多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。
14.多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
15.多邊形的對角線:連接多邊形不相鄰的兩個頂巖碧檔點的線段,叫做多邊形的對角線。
16.多邊形的分類:分為凸多邊形及凹多邊形,凸多邊形又可稱為平面多邊形,凹多邊形又稱空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內(nèi)角相等。
17.正多邊形:在平面內(nèi),各個角都相等,各條邊都相等的多邊形叫做正多邊形。
18.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。
19.公式與性質(zhì)
多邊形內(nèi)角和公式:n邊形的內(nèi)角和等于(n-2)·180°
20.多邊形外角和定理:
(1)n邊形外角和等于n·180°-(n-2)·180°=360°
(2)多邊形的每個內(nèi)角與它相鄰的外角是鄰補角,所以n邊形內(nèi)角和加外角和等于n·180°
21.多邊形對角線的條數(shù):
(1)從n邊形的一個頂點出發(fā)可以引(n-3)條對角線,把多邊形分詞(n-2)個三角形。
(2)n邊形共有n(n-3)/2條對角線。
初一數(shù)學(xué)知識點總結(jié)2
平面直角坐標系
1.定義:平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。水平的數(shù)軸稱為x軸或橫軸,習(xí)慣上取向右為正方向;豎直的數(shù)軸稱為y軸或縱軸,取向上方向為正方向;兩坐標軸的交點為平面直角坐標系的原點。
2.平面上慧念的任意一點都可以用一個有序數(shù)對來表示,記為(a,b),a是橫坐標,b是縱坐標。
3.原點的坐標是(0,0);
縱坐標相同的點的連線平行于x軸;
橫坐標相同的點的連線平行于y軸;
x軸上的點的縱坐標為0,表示為(x,0);
y軸上的點的橫坐標為0,表示為(0,y)。
4.建立了平面直角坐標系以后,坐標平面就被兩條坐標軸分為了Ⅰ、Ⅱ、Ⅲ、Ⅳ四個部分,分別叫做第一象限、第二象限、第三象限和第四象限。坐標軸上的點不屬于任何象限。
5.幾個象限內(nèi)點的特點:
第一象限(+,+);第二象限(—,+);
第三象限(—,—);第四象限(+,—)。
6.(x,y)關(guān)于原點對稱的點是(—x,—y);
(x,y)關(guān)于x軸對稱的點是(x,—y);
(x,y)關(guān)于y軸對稱的點是(—x,y)。
7.點到兩軸的距離:點P(x,y)到x軸的距離是︱y︳;
點P(x,y)到y(tǒng)軸的距離是︱x︳。
8.在第一、三象限角平分線上的點的坐標是(m,m);
在第二、四象限叫平分線上的點的坐標是(m,—m)。
不等式與不等式組
(1)不等式
用不等號(,≥,≤,≠)連接的式子叫做不等式。
(2)不等式的性質(zhì)
①對稱性;
②傳遞性;
③加法單調(diào)性,即同向不等式可加性;
④乘法單調(diào)性;
⑤同向正值不等式可乘性;
⑥正值不等式可乘方;
⑦正值不等式可開方;
(3)一元一次不等式
用不等號連接的,含有一個未知數(shù),并且未知數(shù)的次數(shù)都是1,未知數(shù)的系數(shù)不為0,左右兩邊為整式的式子叫做一元一次不等式。
(4)一元一次不等式組
一元一次不等式組是由幾個含有同一個未知數(shù)的一元一次不等式組成的不等式組。
點、線、面、體知識點
1.幾何圖形的組成
點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。
線:面和面相交的地方是線,分為直線和曲線。
面:包圍著體的是面,分為平面和曲面。
體:幾何體也簡稱體。
2.點動成線,線動成面,面動成體。
點、直線、射線和線段的表示
在幾何里,我們常用字母表示圖形。
一個點可以用一個大寫字母表示。
一條直線可以用一個小寫字母表示。
一條射線可以用端點和射線上另一點來表示。
一條線段可用它的端點的兩個大寫字母來表示。
注意:
(1)表示點、直線、射線、線段時,都要在字母前面注明點、直線、射線、線段。
(2)直線和射線無長度,線段有長度。
(3)直線無端點,射線有一個端點,線段有兩個端點。
(4)點和直線的位置關(guān)系有線面兩種:
①點在直線上,或者說直線經(jīng)過這個點。
②點在直線外,或者說直線不經(jīng)過這個點。
角的種類
銳角:大于0°,小于90°的角叫做銳角。
直角:等于90°的角叫做直角。
鈍角:大于90°而小于180°的角叫做鈍角。
平角:等于180°的角叫做平角。
優(yōu)角:大于180°小于360°叫優(yōu)角。
劣角:大于0°小于180°叫做劣角,銳角、直角、鈍角都是劣角。
周角:等于360°的角叫做周角。
負角:按照順時針方向旋轉(zhuǎn)而成的角叫做負角。
正角:逆時針旋轉(zhuǎn)的角為正角。
0角:等于零度的角。
余角和補角:兩角之和為90°則兩角互為余角,兩角之和為180°則兩角互為補角。等角的余角相等,等角的補角相等。
對頂角:兩條直線相交后所得的只有一個公共頂點且兩個角的兩邊互為反向延長線,這樣的兩個角叫做互為對頂角。兩條直線相交,構(gòu)成兩對對頂角。互為對頂角的兩個角相等。
還有許多種角的關(guān)系,如內(nèi)錯角,同位角,同旁內(nèi)角(三線八角中,主要用來判斷平行)。
初一數(shù)學(xué)知識點總結(jié)3
正數(shù)和負數(shù)
⒈、正數(shù)和負數(shù)的概念
負數(shù):比0小的數(shù)正數(shù):比0大的數(shù)0既不是正數(shù),也不是負數(shù)
注意:①字母a可以表示任意數(shù),當a表示正數(shù)時,—a是負數(shù);當a表示負數(shù)時,—a是正數(shù);當a表示0時,—a仍是0。(如果出判斷題為:帶正號的數(shù)是正數(shù),帶負號的數(shù)是負數(shù),這種說法是錯誤的,例如+a,—a就不能做出簡單判斷)
②正數(shù)有時也可以在前面加“+”,有時“+”省略不寫。所以省略“+”的正數(shù)的符號是正號。
2、具有相反意義的量
若正數(shù)表示某種意義的量,則負數(shù)可以表示具有與該正數(shù)相反意義的量,比如:
零上8℃表示為:+8℃;零下8℃表示為:—8℃
3、0表示的意義
(1)0表示“沒有”,如教室里有0個人,就是說教室里沒有人;
(2)0是正數(shù)和負數(shù)的分界線,0既不是正數(shù),也不是負數(shù)。如:
(3)0表示一個確切的量。如:0℃以及有些題目中的基準,比如以海平面為基準,則0米就表示海平面。
有理數(shù)
1、有理數(shù)的概念
(1)正整數(shù)、0、負整數(shù)統(tǒng)稱為整數(shù)(0和正整數(shù)統(tǒng)稱為自然數(shù))
(2)正分數(shù)和負分數(shù)統(tǒng)稱為分數(shù)
(3)正整數(shù),0,負整數(shù),正分數(shù),負分數(shù)都可以寫成分數(shù)的形式,這樣的數(shù)稱為有理數(shù)。
理解:只有能化成分數(shù)的數(shù)才是有理數(shù)。
①π是無限不循環(huán)小數(shù),不能寫成分數(shù)形式,不是有理數(shù)。
②有限小數(shù)和無限循環(huán)小數(shù)都可化成分數(shù),都是有理數(shù)。
③整數(shù)也能化成分數(shù),也是有理數(shù)
注意:引入負數(shù)以后,奇數(shù)和偶數(shù)的范圍也擴大了,像—2,—4,—6,—8也是偶數(shù),—1,—3,—5也是奇數(shù)。
初一數(shù)學(xué)知識點總結(jié)4
一、一元一次不等式的解法:
一元一次不等式的解法與一元一次方程的解法類似,其步驟為:
1、去分母;
2、去括號;
3、移項;
4、合并同類項;
5、系數(shù)化為1
二、不等式的基本性質(zhì):
1、不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變;
2、不等式的兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變;
3、不等式的兩邊都乘以(或除以)同一個負數(shù),不等號的方向改變。
三、不等式的解:
能使不等式成立的未知數(shù)的值,叫做不等式的解。
四、不等式的解集:
一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。
五、解不等式的依據(jù)不等式的基本性質(zhì):
性質(zhì)1:不等式兩邊加上(或減去)同一個數(shù)(或式子),不等號的方向不變,
性質(zhì)2:不等式兩邊乘以(或除以)同一個正數(shù),不等號的方向不變,
性質(zhì)3:不等式兩邊乘以(或除以)同一個負數(shù),不等號的方向改變,
常見考法
(1)考查一元一次不等式的解法;
(2)考查不等式的性質(zhì)。
誤區(qū)提醒
忽略不等號變向問題。
初中數(shù)學(xué)重點知識點歸納
有理數(shù)乘法的運算律
1、乘法的交換律:ab=ba;
2、乘法的結(jié)合律:(ab)c=a(bc);
3、乘法的分配律:a(b+c)=ab+ac
單項式
只含有數(shù)字與字母的積的代數(shù)式叫做單項式。
注意:單項式是由系數(shù)、字母、字母的'指數(shù)構(gòu)成的。
多項式
1、幾個單項式的和叫做多項式。其中每個單項式叫做這個多項式的項。多項式中不含字母的項叫做常數(shù)項。多項式中次數(shù)最高的項的次數(shù),叫做這個多項式的次數(shù)。
2、同類項所有字母相同,并且相同字母的指數(shù)也分別相同的項叫做同類項。幾個常數(shù)項也是同類項。
提高數(shù)學(xué)思維的方法
轉(zhuǎn)化思維
轉(zhuǎn)化思維,既是一種方法,也是一種思維。轉(zhuǎn)化思維,是指在解決問題的過程中遇到障礙時,通過改變問題的方向,從不同的角度,把問題由一種形式轉(zhuǎn)換成另一種形式,尋求最佳方法,使問題變得更簡單、清晰。
創(chuàng)新思維
創(chuàng)新思維是指以新穎獨創(chuàng)的方法解決問題的思維過程,通過這種思維能突破常規(guī)思維的界限,以超常規(guī)甚至反常規(guī)的方法、視角去思考問題,得出與眾不同的解
要培養(yǎng)質(zhì)疑的習(xí)慣
在家庭教育中,家長要經(jīng)常引導(dǎo)孩子主動提問,學(xué)會質(zhì)疑、反省,并逐步養(yǎng)成習(xí)慣。
在孩子放學(xué)回家后,讓孩子回顧當天所學(xué)的知識:老師如何講解的,同學(xué)是如何回答的?當孩子回答出來之后,接著追問:“為什么?”“你是怎樣想的?”啟發(fā)孩子講出思維的過程并盡量讓他自己作出評價。
有時,可以故意制造一些錯誤讓孩子去發(fā)現(xiàn)、評價、思考。通過這樣的訓(xùn)練,孩子會在思維上逐步形成獨立見解,養(yǎng)成一種質(zhì)疑的習(xí)慣。
初一數(shù)學(xué)知識點總結(jié)5
(1)凡能寫成形式的數(shù),都是有理數(shù).正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負數(shù);-a不一定是負數(shù),+a也不一定是正數(shù);p不是有理數(shù);
(2)有理數(shù)的分類:①整數(shù)②分數(shù)
(3)注意:有理數(shù)中,1、0、-1是三個特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性;
(4)自然數(shù)0和正整數(shù);a>0a是正數(shù);a<0a是負數(shù);
a≥0a是正數(shù)或0a是非負數(shù);a≤0?a是負數(shù)或0a是非正數(shù).
有理數(shù)比大小:
(1)正數(shù)的絕對值越大,這個數(shù)越大;
(2)正數(shù)永遠比0大,負數(shù)永遠比0小;
(3)正數(shù)大于一切負數(shù);
(4)兩個負數(shù)比大小,絕對值大的反而小;
(5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;
(6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)<0.
初一數(shù)學(xué)知識點總結(jié)6
一、方程的有關(guān)概念
1.方程:含有未知數(shù)的等式就叫做方程.
2. 一元一次方程:只含有一個未知數(shù)(元)x,未知數(shù)x的指數(shù)都是1(次),這樣的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x)=5等都是一元一次方程.
3.方程的解:使方程中等號左右兩邊相等的未知數(shù)的值,叫做方程的解.
注:⑴ 方程的解和解方程是不同的概念,方程的解實質(zhì)上是求得的結(jié)果,它是一個數(shù)值(或幾個數(shù)值),而解方程的含義是指求出方程的解或判斷方程無解的過程. ⑵ 方程的解的檢驗方法,首先把未知數(shù)的值分別代入方程的左、右兩邊計算它們的值,其次比較兩邊的值是否相等從而得出結(jié)論.
二、等式的性質(zhì)
等式的性質(zhì)(1):等式兩邊都加上(或減去)同個數(shù)(或式子),結(jié)果仍相等.
等式的性質(zhì)(1)用式子形式表示為:如果a=b,那么a±c=b±c
等式的性質(zhì)(2):等式兩邊乘同一個數(shù),或除以同一個不為0的數(shù),結(jié)果仍相等,等式的性質(zhì)(2)用式子形式表示為:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb
三、移項法則: 把等式一邊的某項變號后移到另一邊,叫做移項.
四、去括號法則
1. 括號外的因數(shù)是正數(shù),去括號后各項的符號與原括號內(nèi)相應(yīng)各項的符號相同.
2. 括號外的因數(shù)是負數(shù),去括號后各項的符號與原括號內(nèi)相應(yīng)各項的符號改變.
五、解方程的一般步驟
1. 去分母(方程兩邊同乘各分母的最小公倍數(shù))
2. 去括號(按去括號法則和分配律)
3. 移項(把含有未知數(shù)的項移到方程一邊,其他項都移到方程的另一邊,移項要變號)
4. 合并(把方程化成ax = b (a≠0)形式)
5. 系數(shù)化為1(在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解x=a(b).
六、用方程思想解決實際問題的一般步驟
1. 審:審題,分析題中已知什么,求什么,明確各數(shù)量之間的關(guān)系.
2. 設(shè):設(shè)未知數(shù)(可分直接設(shè)法,間接設(shè)法)
3. 列:根據(jù)題意列方程.
4. 解:解出所列方程.
5. 檢:檢驗所求的解是否符合題意.
6. 答:寫出答案(有單位要注明答案)
初一數(shù)學(xué)知識點總結(jié)7
一、知識梳理
知識點1 :正、負數(shù)的概念:我們把像3、2、+0.5、0.03%這樣的數(shù)叫做正數(shù),它們都是比0大的數(shù);像-3、-2、-0.5、-0.03%這樣數(shù)叫做負數(shù)。它們都是比0小的數(shù)。0既不是正數(shù)也不是負數(shù)。我們可以用正數(shù)與負數(shù)表示具有相反意義的量。
知識點2 :有理數(shù)的概念和分類:整數(shù)和分數(shù)統(tǒng)稱有理數(shù)。有理數(shù)的分類主要有兩種:
注:有限小數(shù)和無限循環(huán)小數(shù)都可看作分數(shù)。
知識點3 :數(shù)軸的概念:像下面這樣規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸。
知識點4 :絕對值的概念:
(1)幾何意義:數(shù)軸上表示a的點與原點的距離叫做數(shù)a的絕對值,記作|a|;
(2)代數(shù)意義:一個正數(shù)的絕對值是它的本身;一個負數(shù)的絕對值是它的相反數(shù);零的絕對值是零。
注:任何一個數(shù)的絕對值均大于或等于0(即非負數(shù)).
知識點5 :相反數(shù)的概念:
(1)幾何意義:在數(shù)軸上分別位于原點的兩旁,到原點的距離相等的兩個點所表示的數(shù),叫做互為相反數(shù);
(2)代數(shù)意義:符號不同但絕對值相等的兩個數(shù)叫做互為相反數(shù)。0的相反數(shù)是0。
知識點6 :有理數(shù)大小的比較:
有理數(shù)大小比較的基本法則:正數(shù)都大于零,負數(shù)都小于零,正數(shù)大于負數(shù)。
數(shù)軸上有理數(shù)大小的比較:在數(shù)軸上表示的兩個數(shù),右邊的數(shù)總比左邊的大。
用絕對值進行有理數(shù)大小的比較:兩個正數(shù),絕對值大的正數(shù)大;兩個負數(shù),絕對值大的負數(shù)反而小。
知識點7 :有理數(shù)加法法則:
(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;
(2)異號兩數(shù)相加,絕對值相等時,和為0;絕對值不等時,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;
(3)一個數(shù)與0相加,仍得這個數(shù).
知識點8 :有理數(shù)加法運算律:
加法交換律:兩個數(shù)相加,交換加數(shù)的位置,和不變。
加法結(jié)合律:三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。
知識點9 :有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。
知識點10 :有理數(shù)加減混合運算:根據(jù)有理數(shù)減法的法則,一切加法和減法的運算,都可以統(tǒng)一成加法運算,然后省略括號和加號,并運用加法法則、加法運算律進行計算。
初一數(shù)學(xué)是整個數(shù)學(xué)的基礎(chǔ),一定要扎實把握,我整理了一些初一數(shù)學(xué)的重要知識點。
正數(shù)和負數(shù)的概念
1、負數(shù):比0小的數(shù)正數(shù):比0大的數(shù)0既不是正數(shù),也不是負數(shù)。
注意:
①字母a可以表示任意數(shù),當a表示正數(shù)時,-a是負數(shù);當a表示負數(shù)時,-a是正數(shù);當a表示0時,-a仍是0。(如果出判斷題為:帶正號的數(shù)是正數(shù),帶負號的數(shù)是負數(shù),這種說法是棗悉錯誤的,例如+a,-a就不能做出簡單判斷)
②正數(shù)有時也可以在前面加“+”,有時“+”省略不寫。所以省略“+”的正數(shù)的符號是正號。
2、具有相反意義的量
若正數(shù)表示某種意義的量,則負數(shù)可以表示具有與該正數(shù)相反意義的量。
比如:零上8℃表示為:+8℃;零下8℃表示為:-8℃
3、0表示的意義
(1)0表示“沒有”,如教室里有0個人,就是說教室里沒有人。
(2)0是正數(shù)和負數(shù)的分界線,0既不是正數(shù),也不是負數(shù)。
(3)0表示一個確切的量。如:0℃以及有些題目中的基準,比如以海平面為基準,則0米就表示海平面。
數(shù)軸
1、數(shù)軸的概念
規(guī)定了原點,正方向,單位長度的直線叫做數(shù)軸。
注意:
(1)數(shù)軸是一條向兩端無限延伸的直線;
(2)原點、正方向、單位長度是數(shù)軸的三要素,三者缺一不。
2、數(shù)軸上的點與有理數(shù)的關(guān)系
(1)所有的有理數(shù)都可以用數(shù)軸上的點來表示,正有理數(shù)可用原點右邊的點表示,負有理數(shù)可用原點左邊的點表示,0用原點表示。
(2)所有的有理數(shù)都可以用數(shù)軸上的點表示出來,但數(shù)軸上的點不都表示有理數(shù),也就是說,有理數(shù)與數(shù)軸上的點不是一一對應(yīng)關(guān)系。(如,數(shù)軸上的點π不是有理數(shù))。
3.利用數(shù)軸表示兩數(shù)大小
(1)在數(shù)軸上數(shù)的大小比較,右邊的數(shù)總比左邊的數(shù)大;
(2)正數(shù)都大于0,負數(shù)都小于0,正數(shù)大于負數(shù);
(3)兩個負數(shù)比較,距離原點遠的數(shù)比距離原點近的數(shù)小。
相反數(shù)
1、基本概念
只有符號不同的兩個數(shù)叫做互為相反數(shù),其中一個是另一個的相反數(shù),0的相反數(shù)是0。
注意:
(1)相反數(shù)是成對出現(xiàn)的;
(2)相反數(shù)只有符號不同,若一個為正,則另一個悉笑為負;
(3)0的相反數(shù)是它本身;相反數(shù)為本身的數(shù)是0。
2、相反數(shù)的性質(zhì)與判定
(1)任何數(shù)都有相反數(shù),且只有一個;
(2)0的相反數(shù)是0;
(3)互為相反數(shù)的兩數(shù)和為0,和為0的兩數(shù)互為相反數(shù),即a,b互為相反數(shù),則a+b=0。
3、相反數(shù)的幾何意義
在數(shù)軸上與原點距離相等的兩點表示的兩個數(shù),是互為相反數(shù);互為相反數(shù)的兩個數(shù),在數(shù)軸上的對應(yīng)點在原點兩旁,并且睜巖含與原點的距離相等。0的相反數(shù)對應(yīng)原點;原點表示0的相反數(shù)。說明:在數(shù)軸上,表示互為相反數(shù)的兩個點關(guān)于原點對稱。
以上是我整理的初一數(shù)學(xué)知識點,希望能幫到你。
很多同學(xué)蠢局在復(fù)習(xí)初一數(shù)學(xué)時找不到重點,因為沒有做過的總結(jié),導(dǎo)致復(fù)習(xí)效率不高。下面是由我為大家整理的“初一數(shù)學(xué)知識點總結(jié)歸納大全”,僅供參考,歡迎大家閱讀本文。
七年級數(shù)學(xué)知識點總結(jié)
1.有理數(shù):
(1)凡能寫成形式的數(shù),都是有理數(shù).正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負數(shù);-a不一定是負數(shù),+a也不一定是正數(shù);π不是有理數(shù);
(2)注意:有理數(shù)中,1、0、-1是三個槐檔蘆特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性;
2.數(shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線.
3.相反數(shù):
(1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;
(2)注意:a-b+c的相反數(shù)是-a+b-c;a-b的相反鉛帶數(shù)是b-a;a+b的相反數(shù)是-a-b;
4.絕對值:
(1)正數(shù)的絕對值是其本身,0的絕對值是0,負數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;
(2)絕對值可表示為:
絕對值的問題經(jīng)常分類討論;
(3)a|是重要的非負數(shù),即|a|≥0;注意:|a|?|b|=|a?b|,
5.有理數(shù)比大?。?1)正數(shù)的絕對值越大,這個數(shù)越大;(2)正數(shù)永遠比0大,負數(shù)永遠比0小;(3)正數(shù)大于一切負數(shù);(4)兩個負數(shù)比大小,絕對值大的反而小;(5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)<0.
七年級數(shù)學(xué)知識點總結(jié)
二元一次方程組
1.二元一次方程:含有兩個未知數(shù),并且含未知數(shù)項的次數(shù)是1,這樣的方程是二元一次方程.注意:一般說二元一次方程有無數(shù)個解.
2.二元一次方程組:兩個二元一次方程聯(lián)立在一起是二元一次方程組.
3.二元一次方程組的解:使二元一次方程組的兩個方程,左右兩邊都相等的兩個未知數(shù)的值,叫二元一次方程組的解.注意:一般說二元一次方程組只有解(即公共解).
4.二元一次方程組的解法:
(1)代入消元法;(2)加減消元法;
(3)注意:判斷如何解簡單是關(guān)鍵.
※5.一次方程組的應(yīng)用:
(1)對于一個應(yīng)用題設(shè)出的未知數(shù)越多,列方程組可能容易一些,但解方程組可能比較麻煩,反之則難列易解
(2)對于方程組,若方程個數(shù)與未知數(shù)個數(shù)相等時,一般可求出未知數(shù)的值;
(3)對于方程組,若方程個數(shù)比未知數(shù)個數(shù)少一個時,一般求不出未知數(shù)的值,但總可以求出任何兩個未知數(shù)的關(guān)系.
一元一次不等式(組)
1.不等式:用不等號,把兩個代數(shù)式連接起來的式子叫不等式.
2.不等式的基本性質(zhì):
不等式的基本性質(zhì)1:不等式兩邊都加上(或減去)同一個數(shù)或同一個整式,不等號的方向不變;
不等式的基本性質(zhì)2:不等式兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變;
不等式的基本性質(zhì)3:不等式兩邊都乘以(或除以)同一個負數(shù),不等號的方向要改變.
3.不等式的解集:能使不等式成立的未知數(shù)的值,叫做這個不等式的解;不等式所有解的集合,叫做這個不等式的解集.
4.一元一次不等式:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,系數(shù)不等于零的不等式,叫做一元一次不等式;它的標準形式是ax+b0或ax+b0,(a0).
5.一元一次不等式的解法:一元一次不等式的解法與解一元一次方程的解法類似,但一定要注意不等式性質(zhì)3的應(yīng)用;注意:在數(shù)軸上表示不等式的解集時,要注意空圈和實點.
七年級數(shù)學(xué)知識點總結(jié)
整式的加減
一、代數(shù)式
1、用運算符號把數(shù)或表示數(shù)的字母連結(jié)而成的式子,叫做代數(shù)式。單獨的一個數(shù)或字母也是代數(shù)式。
2、用數(shù)值代替代數(shù)式里的字母,按照代數(shù)式里的運算關(guān)系計算得出的結(jié)果,叫做代數(shù)式的值。
二、整式
1、單項式:
(1)由數(shù)和字母的乘積組成的代數(shù)式叫做單項式。
(2)單項式中的數(shù)字因數(shù)叫做這個單項式的系數(shù)。
(3)一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù)。
2、多項式
(1)幾個單項式的和,叫做多項式。
(2)每個單項式叫做多項式的項。
(3)不含字母的項叫做常數(shù)項。
3、升冪排列與降冪排列
(1)把多項式按x的指數(shù)從大到小的順序排列,叫做降冪排列。
(2)把多項式按x的指數(shù)從小到大的順序排列,叫做升冪排列。
三、整式的加減
1、整式加減的理論根據(jù)是:去括號法則,合并同類項法則,以及乘法分配率。
去括號法則:如果括號前是“十”號,把括號和它前面的“+”號去掉,括號里各項都不變符號;如果括號前是“一”號,把括號和它前面的“一”號去掉,括號里各項都改變符號。
2、同類項:所含字母相同,并且相同字母的指數(shù)也相同的項叫做同類項。
合并同類項:
(1)合并同類項的概念:把多項式中的同類項合并成一項叫做合并同類項。
(2)合并同類項的法則:同類項的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變。
(3)合并同類項步驟:
a.準確的找出同類項。
b.逆用分配律,把同類項的系數(shù)加在一起(用小括號),字母和字母的指數(shù)不變。
c.寫出合并后的結(jié)果。
(4)在掌握合并同類項時注意:
a.如果兩個同類項的系數(shù)互為相反數(shù),合并同類項后,結(jié)果為0.
b.不要漏掉不能合并的項。
c.只要不再有同類項,就是結(jié)果(可能是單項式,也可能是多項式)。
說明:合并同類項的關(guān)鍵是正確判斷同類項。
3、幾個整式相加減的一般步驟:
(1)列出代數(shù)式:用括號把每個整式括起來,再用加減號連接。
(2)按去括號法則去括號。
(3)合并同類項。
4、代數(shù)式求值的一般步驟:
(1)代數(shù)式化簡
(2)代入計算
(3)對于某些特殊的代數(shù)式,可采用“整體代入”進行計算。
圖形的初步認識
一、立體圖形與平面圖形
1、長方體、正方體、球、圓柱、圓錐等都是立體圖形。此外棱柱、棱錐也是常見的立體圖形。
2、長方形、正方形、三角形、圓等都是平面圖形。
3、許多立體圖形是由一些平面圖形圍成的,將它們適當?shù)丶糸_,就可以展開成平面圖形。
二、點和線
1、經(jīng)過兩點有一條直線,并且只有一條直線。
2、兩點之間線段最短。
3、點C線段AB分成相等的兩條線段AM與MB,點M叫做線段AB的中點。類似的還有線段的三等分點、四等分點等。
4、把線段向一方無限延伸所形成的圖形叫做射線。
三、角
1、角是由兩條有公共端點的射線組成的圖形。
2、繞著端點旋轉(zhuǎn)到角的終邊和始邊成一條直線,所成的角叫做平角。
3、繞著端點旋轉(zhuǎn)到終邊和始邊再次重合,所成的角叫做周角。
4、度、分、秒是常用的角的度量單位。
把一個周角360等分,每一份就是一度的角,記作1°;把1度的角60等分,每份叫做1分的角,記作1′;把1分的角60等分,每份叫做1秒的角,記作1″。
四、角的比較
從一個角的頂點出發(fā),把這個角分成相等的兩個角的射線,叫做這個角的平分線。類似的,還有叫的三等分線。
五、余角和補角
1、如果兩個角的和等于90(直角),就說這兩個角互為余角。
2、如果兩個角的和等于180(平角),就說這兩個角互為補角。
3、等角的補角相等。
4、等角的余角相等。
六、相交線
1、定義:兩條直線相交,所成的四個角中有一個角是直角,那么這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。
2、注意:
⑴垂線是一條直線。
⑵具有垂直關(guān)系的兩條直線所成的4個角都是90。
⑶垂直是相交的特殊情況。
⑷垂直的記法:a⊥b,AB⊥CD。
3、畫已知直線的垂線有無數(shù)條。
4、過一點有且只有一條直線與已知直線垂直。
5、連接直線外一點與直線上各點的所有線段中,垂線段最短。簡單說成:垂線段最短。
6、直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。
7、有一個公共的頂點,有一條公共的邊,另外一邊互為反向延長線,這樣的兩個角叫做鄰補角。
兩條直線相交有4對鄰補角。
8、有公共的頂點,角的兩邊互為反向延長線,這樣的兩個角叫做對頂角。兩條直線相交,有2對對頂角。對頂角相等。
七、平行線
1、在同一平面內(nèi),兩條直線沒有交點,則這兩條直線互相平行,記作:a∥b。
2、平行公理:經(jīng)過直線外一點,有且只有一條直線與這條直線平行。
3、如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。
4、判定兩條直線平行的方法:
(1)兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行。簡單說成:同位角相等,兩直線平行。
(2)兩條直線被第三條直線所截,如果內(nèi)錯角相等,那么這兩條直線平行。簡單說成:內(nèi)錯角相等,兩直線平行。
(3)兩條直線被第三條直線所截,如果同旁內(nèi)角互補,那么這兩條直線平行。簡單說成:同旁內(nèi)角互補,兩直線平行。
5、平行線的性質(zhì)
(1)兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。
(2)兩條平行線被第三條直線所截,內(nèi)錯角相等。簡單說成:兩直線平行,內(nèi)錯角相等。
(3)兩條平行線被第三條直線所截,同旁內(nèi)角互補。簡單說成:兩直線平行,同旁內(nèi)角互補。
拓展閱讀:初一數(shù)學(xué)考試答題技巧
選擇題的答題技巧
掌握選擇題應(yīng)試的基本方法:要抓住選擇題的特點,充分地利用選擇支提供的信息,決不能把所有的選擇題都當作解答題來做。
首先,看清試題的指導(dǎo)語,確認題型和要求。二是審查分析題干,確定選擇的范圍與對象,要注意分析題干的內(nèi)涵與外延規(guī)定。三是辨析選項,排誤選正。四是要正確標記和仔細核查。
填空題答題技巧
要求熟記的基本概念、基本事實、數(shù)據(jù)公式、原理,復(fù)習(xí)時要特別細心,注意記熟,做到臨考前能準確無誤、清晰回憶。
對那些起關(guān)鍵作用的,或最容易混淆記錯的概念、符號或圖形要特別注意,因為考查的往往就是它們。如區(qū)間的端點開還是閉、定義域和值域要用區(qū)間或集合表示、單調(diào)區(qū)間誤寫成不等式或把兩個單調(diào)區(qū)間取了并集等等。
解答題答題技巧
(1)仔細審題。注意題目中的關(guān)鍵詞,準確理解考題要求。
(2)規(guī)范表述。分清層次,要注意計算的準確性和簡約性、邏輯的條理性和連貫性。
(3)給出結(jié)論。注意分類討論的問題,最后要歸納結(jié)論。
(4)講求效率。合理有序的書寫試卷和使用草稿紙,節(jié)省驗算時間。
下面是我整理的初一數(shù)學(xué)基礎(chǔ)知識點,掌握好,初一數(shù)學(xué)拿到改顫游高分完全沒有問題,趕快收藏吧。
有理數(shù)的加法法則
⑴同號兩數(shù)相加,取相同的符號,并把絕對值相加。
⑵絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值?;橄喾磾?shù)的兩個數(shù)相加得0。
⑶一個數(shù)同0相加,仍得這個數(shù)。
兩個數(shù)相加,交換加數(shù)的位置,和不變。
加法交換律:a+b=b+a
三個數(shù)相加,先把前面兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。
加法結(jié)合律:(a+b)+c=a+(b+c)
有理數(shù)乘法法則
兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘。
任何數(shù)同0相乘,都得0。
乘積是1的兩個數(shù)互為倒數(shù)。
幾個不是0的數(shù)相乘,負因數(shù)的個數(shù)是偶數(shù)時,積是正數(shù);負因數(shù)的個數(shù)是奇數(shù)時,積是負數(shù)。
兩個數(shù)相乘,交換因數(shù)的位置,積相等。
ab=ba:
三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積相等。
(ab)c=a(bc):
一個數(shù)同兩個數(shù)的和相乘,等于把這個數(shù)分別同這兩個數(shù)相乘,再把積相加。
a(b+c)=ab+ac:
數(shù)字與字母相乘的書寫規(guī)范:
⑴數(shù)字與字母相乘,乘號要省略,或用“”
⑵數(shù)字與字母相乘,當系數(shù)是1或-1時,1要省略不寫。
⑶帶分數(shù)與字母相乘,帶分數(shù)應(yīng)當化成假分數(shù)。
用字母x表示任意一個有理數(shù),2與x的乘積記為2x,3與x的乘積記為3x,則式子2x+3x是2x與3x的和,2x與3x叫做這個式子的項,2和3分別是著兩項的系數(shù)。
一般地,合并含有相同字母因數(shù)的式子時,只需將它們的系數(shù)合并,所得結(jié)果作為系數(shù),再乘字母因數(shù),即
ax+bx=(a+b)x:
上式中x是字母因數(shù),a與b分別是ax與bx這兩項的系數(shù)。
去括號法則:
括號前是“+”,把括號和括號前的“+”去掉,括號里各項都不改變符號。
括號前是“-”,把括號和括號前的“-”去掉,括號里各項都改變符號。
括號外的因數(shù)是正數(shù),去括號后式子各項的符號與原括號內(nèi)式子相應(yīng)各項的符號相同;括號外的因數(shù)是負數(shù),去括號后式子各項的符號與原括號內(nèi)式子相應(yīng)各項的符號相反。
一元一次方程
1、從算式到方程
方程是含有未知數(shù)的等式。
方程都只含有一個未知數(shù)(元)x,未知數(shù)x的指數(shù)都是1(次),這樣的方程叫做一元一次方程。解方程就是求出使方程中等號左右兩邊相等的未知數(shù)的值,這個值就是方程的解(solution)。
等式的性質(zhì):1.等式兩邊加(或減)同一個數(shù)(或式子),結(jié)果仍相等。2.等式兩邊乘同一個數(shù),或除以同一個不為0的數(shù),結(jié)果仍相等。
2、從古老的代數(shù)書說起——一元一次方程的討論;
把等式一邊的某項變號后移到另一邊,叫做移項。
三角形
1、核銷與三角形有關(guān)的線段
三角形(triangle)具有穩(wěn)定性。
2、與三角形有關(guān)的角
三角形的內(nèi)角和等于180度。
三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和。
三角形的一個外角大于與它不相鄰的任何一個內(nèi)角
3、多邊形及其內(nèi)角和
n邊形內(nèi)角和等于:(n-2)?180度。
多邊形(polygon)的外角和等于360度。
相反數(shù)
(1)相反數(shù)的概念:只有符號不同的兩個數(shù)叫做互為相反數(shù)。
(2)相反數(shù)的意義:掌握相反數(shù)是成對出現(xiàn)的,不能單獨存在,從數(shù)軸上看,除0外,互為相反數(shù)的兩個數(shù),它們分別在原點兩旁且到原點距洞亮離相等。
(3)多重符號的化簡:與“+”個數(shù)無關(guān),有奇數(shù)個“﹣”號結(jié)果為負,有偶數(shù)個“﹣”號,結(jié)果為正。
(4)規(guī)律方法總結(jié):求一個數(shù)的相反數(shù)的方法就是在這個數(shù)的前邊添加“﹣”,如a的相反數(shù)是﹣a,m+n的相反數(shù)是﹣(m+n),這時m+n是一個整體,在整體前面添負號時,要用小括號。
初一數(shù)學(xué)必考知識點總結(jié)1
正數(shù)和負數(shù)
⒈、正數(shù)和負數(shù)的概念
負數(shù):比0小的數(shù)正數(shù):比0大的數(shù)0既不是正數(shù),也不是負數(shù)
注意:①字母a可以表示任意數(shù),當a表示正數(shù)時,—a是負數(shù);當a表示負數(shù)時,—a是正數(shù);當a表示0時,—a仍是0。(如果出判斷題為:帶正號的數(shù)是正數(shù),帶負號的數(shù)是負數(shù),這種說法是錯誤的,例如+a,—a就不能做出簡單判斷)
②正數(shù)有時也可以在前面加“+”,有時“+”省略不寫。所以省略“+”的正數(shù)的符號是正號。
2、具有相反意義的量
若正數(shù)表示某種意義的量,則負數(shù)可以表示具有與該正數(shù)相反銷態(tài)缺意義的量,比如:
零上8℃表示為:+8℃;零下8℃表示為:—8℃
3、0表示的意義
(1)0表示“沒有”,如教室里有0個人,就是說教室里沒有人;
(2)0是正數(shù)和負數(shù)的分界線,0既不是正數(shù),也不是負數(shù)。如:
(3)0表示一個確切的量。如:0℃以及有些題目中的基準,比如以海平面為基準,則0米就表示海平面。
有理數(shù)
1、有理數(shù)的概念
(1)正整數(shù)、0、負整數(shù)統(tǒng)稱為整數(shù)(0和正整數(shù)統(tǒng)稱為自然數(shù))
(2)正分數(shù)和負分數(shù)統(tǒng)稱為分數(shù)
(3)正整數(shù),0,負整數(shù),正分數(shù),負分數(shù)都可以寫成分數(shù)的形式,這樣的數(shù)稱為有理數(shù)。
理解:只有能化成分數(shù)的數(shù)才是有理數(shù)。①π是無限不循環(huán)小數(shù),不能寫成分數(shù)形式,不是有理數(shù)。②有限小數(shù)和無限循環(huán)小數(shù)都可化成分數(shù),都是有理數(shù)。③整數(shù)也能化成分數(shù),也是有理數(shù)
注意:引入負數(shù)以后,奇數(shù)和偶數(shù)的范圍也擴大了,像—2,—4,—6,—8也是偶數(shù),—1,—3,—5也是奇數(shù)。
初一數(shù)學(xué)必考知識點總結(jié)2
有理數(shù)
1.1 正數(shù)與負數(shù)
在以前學(xué)過的0以外的數(shù)前面加上負號“—”的數(shù)叫負數(shù)(negative number)。
與負數(shù)具有相反意義,即以前學(xué)過的0以外的數(shù)叫做正數(shù)(positive number)(根據(jù)需要,有時在正數(shù)前面也加上“+”)。
1.2 有理數(shù)
正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù)(integer),正分數(shù)和負分數(shù)統(tǒng)稱分數(shù)(fraction)。
整數(shù)和分數(shù)統(tǒng)稱有理數(shù)(rational number)。
通常用一條直線上的點表示數(shù),這條直線叫數(shù)軸(number axis)。
數(shù)軸三要素:原點、正方向、單位長度。
在直線上任取一個點表示數(shù)0,這個點叫做原點(origin)。
只有符號不同的兩個數(shù)叫做互為相反數(shù)(opposite number)。(例:2的相反數(shù)是-2;0的相反數(shù)是0)
數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對閉爛值(absolute value),記作|a|。
一個正數(shù)的絕對值是它本身;一個負數(shù)的絕對值是它的相反數(shù);0的絕對值是0。兩個負數(shù),絕對值大的反而小。
平面直角坐標系:
在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合
三個規(guī)定:
①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。
③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知虧辯識的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
平面直角坐標系的構(gòu)成
在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標系,簡稱為直角坐標系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。
通過上面對平面直角坐標系的構(gòu)成知識的講解學(xué)習(xí),希望同學(xué)們對上面的內(nèi)容都能很好的掌握,同學(xué)們認真學(xué)習(xí)吧。
點的坐標的性質(zhì)
建立了平面直角坐標系后,對于坐標系平面內(nèi)的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內(nèi)確定它所表示的一個點。
對于平面內(nèi)任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應(yīng)點a,b分別叫做點C的橫坐標、縱坐標,有序?qū)崝?shù)對(a,b)叫做點C的坐標。
一個點在不同的象限或坐標軸上,點的坐標不一樣。
希望上面對點的坐標的性質(zhì)知識講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會在考試中取得優(yōu)異成績的。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會考出好成績。
因式分解
因式分解定義 :把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素 :①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式: 一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法 :①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
①不準丟字母
②不準丟常數(shù)項注意查項數(shù)
③雙重括號化成單括號
④結(jié)果按數(shù)單字母單項式多項式順序排列
⑤相同因式寫成冪的形式
⑥首項負號放括號外
⑦括號內(nèi)同類項合并。
初一數(shù)學(xué)必考知識點總結(jié)3
第一章有理數(shù)
1、大于0的數(shù)是正數(shù)。
2、有理數(shù)分類:正有理數(shù)、0、負有理數(shù)。
3、有理數(shù)分類:整數(shù)(正整數(shù)、0、負整數(shù))、分數(shù)(正分數(shù)、負分數(shù))
4、規(guī)定了原點,單位長度,正方向的直線稱為數(shù)軸。
5、數(shù)的大小比較:
①正數(shù)大于0,0大于負數(shù),正數(shù)大于負數(shù)。
②兩個負數(shù)比較,絕對值大的反而小。
6、只有符號不同的兩個數(shù)稱互為相反數(shù)。
7、若a+b=0,則a,b互為相反數(shù)
8、表示數(shù)a的點到原點的距離稱為數(shù)a的絕對值
9、絕對值的三句:正數(shù)的絕對值是它本身,
負數(shù)的絕對值是它的相反數(shù),0的絕對值是0。
10、有理數(shù)的計算:先算符號、再算數(shù)值。
11、加減: ①正+正 ②大-小 ③小-大=-(大-小) ④-☆-О=-(☆+О)
12、乘除:同號得正,異號的負
13、乘方:表示n個相同因數(shù)的乘積。
14、負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪是正數(shù)。
15、混合運算:先乘方,再乘除,后加減,同級運算從左到右,有括號的先算括號。
16、科學(xué)計數(shù)法:用ax10n 表示一個數(shù)。(其中a是整數(shù)數(shù)位只有一位的數(shù))
17、左邊第一個非零的數(shù)字起,所有的數(shù)字都是有效數(shù)字。
【知識梳理】
1.數(shù)軸:數(shù)軸三要素:原點,正方向和單位長度;數(shù)軸上的點與實數(shù)是一一對應(yīng)的。
2.相反數(shù)實數(shù)a的相反數(shù)是-a;若a與b互為相反數(shù),則有a+b=0,反之亦然;幾何意義:在數(shù)軸上,表示相反數(shù)的兩個點位于原點的兩側(cè),并且到原點的距離相等。
3.倒數(shù):若兩個數(shù)的積等于1,則這兩個數(shù)互為倒數(shù)。
4.絕對值:代數(shù)意義:正數(shù)的絕對值是它本身,負數(shù)的絕對值是它的相反數(shù),0的絕對值是0;
幾何意義:一個數(shù)的絕對值,就是在數(shù)軸上表示這個數(shù)的點到原點的距離.
5.科學(xué)記數(shù)法:,其中。
6.實數(shù)大小的比較:利用法則比較大小;利用數(shù)軸比較大小。
7.在實數(shù)范圍內(nèi),加、減、乘、除、乘方運算都可以進行,但開方運算不一定能行,如負數(shù)不能開偶次方。實數(shù)的運算基礎(chǔ)是有理數(shù)運算,有理數(shù)的一切運算性質(zhì)和運算律都適用于實數(shù)運算。正確的確定運算結(jié)果的符號和靈活的使用運算律是掌握好實數(shù)運算的關(guān)鍵。
一元一次方程知識點
知識點1:等式的概念:用等號表示相等關(guān)系的式子叫做等式.
知識點2:方程的概念:含有未知數(shù)的等式叫方程,方程中一定含有未知數(shù),而且必須是等式,二者缺一不可.
說明:代數(shù)式不含等號,方程是用等號把代數(shù)式連接而成的式子,且其中一定要含有未知數(shù).
知識點3:一元一次方程的概念:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1的方程叫一元一次方程.任何形式的一元一次方程,經(jīng)變形后,總能變成形為ax=b(a≠0,a、b為已知數(shù))的形式,這種形式的方程叫一元一次方程的一般式.注意a≠0這個重要條件,它也是判斷方程是否是一元一次方程的重要依據(jù).
例2:如果(a+1) +45=0是一元一次方程,則a________,b________.
分析:一元一次方程需要滿足的條件:未知數(shù)系數(shù)不等于0,次數(shù)為1. ∴a+1≠0,2b-1=1.∴a≠-1,b=1.
知識點4:等式的基本性質(zhì)(1)等式兩邊加上(或減去)同一個數(shù)或同一個代數(shù)式,所得的結(jié)果仍是等式.即若a=b,則a±m(xù)=b±m(xù).
(2) 等式兩邊乘以(或除以)同一個不為0的數(shù)或代數(shù)式, 所得的結(jié)果仍是等式.
即若a=b,則am=bm.或. 此外等式還有其它性質(zhì): 若a=b,則b=a.若a=b,b=c,則a=c.
說明:等式的性質(zhì)是解方程的重要依據(jù).
例3:下列變形正確的是( )
A.如果ax=bx,那么a=b B.如果(a+1)x=a+1, 那么x=1
C.如果x=y,則x-5=5-y D.如果則
分析:利用等式的性質(zhì)解題.應(yīng)選D.
說明:等式兩邊不可能同時除以為零的數(shù)或式,這一點務(wù)必要引起同學(xué)們的高度重視.
知識點5:方程的解與解方程:使方程兩邊相等的未知數(shù)的值叫做方程的解,求方程解的過程叫解方程.
知識點6:關(guān)于移項:⑴移項實質(zhì)是等式的基本性質(zhì)1的運用.
⑵移項時,一定記住要改變所移項的符號.
知識點7:解一元一次方程的一般步驟:去分母、去括號、移項、合并同類項、將未知數(shù)的系數(shù)化為1.具體解題時,有些步驟可能用不上,有些步驟可以顛倒順序,有些步驟可以合寫,以簡化運算,要根據(jù)方程的特點靈活運用.
例4:解方程 .
分析:靈活運用一元一次方程的步驟解答本題.
解答:去分母,得9x-6=2x,移項,得9x-2x=6,合并同類項,得7x=6,系數(shù)化為1,得x=.
說明:去分母時,易漏乘方程左、右兩邊代數(shù)式中的某些項,如本題易錯解為:去分母得9x-1=2x,漏乘了常數(shù)項.
知識點8:方程的檢驗
檢驗?zāi)硵?shù)是否為原方程的解,應(yīng)將該數(shù)分別代入原方程左邊和右邊,看兩邊的值是否相等.
注意:應(yīng)代入原方程的左、右兩邊分別計算,不能代入變形后的方程的左邊和右邊.
初一數(shù)學(xué)必考知識點總結(jié)4
1 過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的余角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理 經(jīng)過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內(nèi)錯角相等,兩直線平行
11 同旁內(nèi)角互補,兩直線平行
12兩直線平行,同位角相等
13 兩直線平行,內(nèi)錯角相等
14 兩直線平行,同旁內(nèi)角互補
15 定理 三角形兩邊的和大于第三邊
16 推論 三角形兩邊的差小于第三邊
17 三角形內(nèi)角和定理 三角形三個內(nèi)角的和等于180
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和
20 推論3 三角形的一個外角大于任何一個和它不相鄰的內(nèi)角
21 全等三角形的對應(yīng)邊、對應(yīng)角相等
22邊角邊公理(SAS) 有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等
23 角邊角公理( ASA)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等
24 推論(AAS) 有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等
25 邊邊邊公理(SSS) 有三邊對應(yīng)相等的兩個三角形全等
26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等
27 定理1 在角的平分線上的點到這個角的兩邊的距離相等
28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點的集合
30 等腰三角形的性質(zhì)定理 等腰三角形的兩個底角相等 (即等邊對等角)
31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊
32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33 推論3 等邊三角形的各角都相等,并且每一個角都等于60
34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
35 推論1 三個角都相等的三角形是等邊三角形
36 推論 2 有一個角等于60的等腰三角形是等邊三角形
37 在直角三角形中,如果一個銳角等于30那么它所對的直角邊等于斜邊的一半
38 直角三角形斜邊上的中線等于斜邊上的一半
39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 ?
40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42 定理1 關(guān)于某條直線對稱的兩個圖形是全等形
43 定理 2 如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線
44定理3 兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上
初一數(shù)學(xué)必考知識點總結(jié)5
盡快地掌握科學(xué)知識,迅速提高學(xué)習(xí)能力,由編輯老師為您提供的初一年級新學(xué)期數(shù)學(xué)知識點,希望給您帶來啟發(fā)!
一、目標與要求
1.通過處理實際問題,讓學(xué)生體驗從算術(shù)方法到代數(shù)方法是一種進步;
2.初步學(xué)會如何尋找問題中的相等關(guān)系,列出方程,了解方程的概念;
3.培養(yǎng)學(xué)生獲取信息,分析問題,處理問題的能力。
二、重點
從實際問題中尋找相等關(guān)系;
建立列方程解決實際問題的思想方法,學(xué)會合并同類項,會解ax+bx=c類型的一元一次方程。
三、難點
從實際問題中尋找相等關(guān)系;
分析實際問題中的已經(jīng)量和未知量,找出相等關(guān)系,列出方程,使學(xué)生逐步建立列方程解決實際問題的思想方法。
四、知識點、概念總結(jié)
1.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程。
2.一元一次方程的標準形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a0)。
3.條件:一元一次方程必須同時滿足4個條件:
(1)它是等式;
(2)分母中不含有未知數(shù);
(3)未知數(shù)最高次項為1;
(4)含未知數(shù)的項的系數(shù)不為0.
4.等式的性質(zhì):
等式的性質(zhì)一:等式兩邊同時加一個數(shù)或減去同一個數(shù)或同一個整式,等式仍然成立。
等式的性質(zhì)二:等式兩邊同時擴大或縮小相同的倍數(shù)(0除外),等式仍然成立。
等式的性質(zhì)三:等式兩邊同時乘方(或開方),等式仍然成立。
解方程都是依據(jù)等式的這三個性質(zhì)等式的性質(zhì)一:等式兩邊同時加一個數(shù)或減同一個數(shù),等式仍然成立。
5.合并同類項
(1)依據(jù):乘法分配律
(2)把未知數(shù)相同且其次數(shù)也相同的相合并成一項;常數(shù)計算后合并成一項
(3)合并時次數(shù)不變,只是系數(shù)相加減。
6.移項
(1)含有未知數(shù)的項變號后都移到方程左邊,把不含未知數(shù)的項移到右邊。
(2)依據(jù):等式的性質(zhì)
(3)把方程一邊某項移到另一邊時,一定要變號。
7.一元一次方程解法的一般步驟:
使方程左右兩邊相等的未知數(shù)的值叫做方程的解。
一般解法:
(1)去分母:在方程兩邊都乘以各分母的最小公倍數(shù);
(2)去括號:先去小括號,再去中括號,最后去大括號;(記住如括號外有減號的話一定要變號)
(3)移項:把含有未知數(shù)的項都移到方程的一邊,其他項都移到方程的另一邊;移項要變號
(4)合并同類項:把方程化成ax=b(a0)的形式;
(5)系數(shù)化成1:在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解x=b/a.
8.同解方程
如果兩個方程的解相同,那么這兩個方程叫做同解方程。
9.方程的同解原理:
(1)方程的兩邊都加或減同一個數(shù)或同一個等式所得的方程與原方程是同解方程。
(2)方程的兩邊同乘或同除同一個不為0的數(shù)所得的方程與原方程是同解方程。
由編輯老師為您提供的初一年級新學(xué)期數(shù)學(xué)知識點,希望給您帶來啟發(fā)!
初一數(shù)學(xué)必考知識點總結(jié)6
一、方程的有關(guān)概念
1.方程:含有未知數(shù)的`等式就叫做方程。
2.一元一次方程:只含有一個未知數(shù)(元)x,未知數(shù)x的指數(shù)都是1(次),這樣的方程叫做一元一次方程。例如:1700+50x=1800,2(x+1.5x)=5等都是一元一次方程。
3.方程的解:使方程中等號左右兩邊相等的未知數(shù)的值,叫做方程的解。
注:⑴方程的解和解方程是不同的概念,方程的解實質(zhì)上是求得的結(jié)果,它是一個數(shù)值(或幾個數(shù)值),而解方程的含義是指求出方程的解或判斷方程無解的過程。⑵方程的解的檢驗方法,首先把未知數(shù)的值分別代入方程的左、右兩邊計算它們的值,其次比較兩邊的值是否相等從而得出結(jié)論。
二、等式的性質(zhì)
(1)等式兩邊都加上(或減去)同個數(shù)(或式子),結(jié)果仍相等。用式子形式表示為:如果a=b,那么ac=bc
(2)等式兩邊乘同一個數(shù),或除以同一個不為0的數(shù),結(jié)果仍相等,用式子形式表示為:如果a=b,那么ac=bc;如果a=b(c0),那么ac=bc
三、移項法則:
把等式一邊的某項變號后移到另一邊,叫做移項。
四、去括號法則
1.括號外的因數(shù)是正數(shù),去括號后各項的符號與原括號內(nèi)相應(yīng)各項的符號相同.
2.括號外的因數(shù)是負數(shù),去括號后各項的符號與原括號內(nèi)相應(yīng)各項的符號改變.
五、解方程的一般步驟
1.去分母(方程兩邊同乘各分母的最小公倍數(shù))
2.去括號(按去括號法則和分配律)
3.移項(把含有未知數(shù)的項移到方程一邊,其他項都移到方程的另一邊,移項要變號)
4.合并(把方程化成ax=b(a0)形式)
5.系數(shù)化為1(在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解x=ba)。
六、用方程思想解決實際問題的一般步驟
1.審:審題,分析題中已知什么,求什么,明確各數(shù)量之間的關(guān)系。
2.設(shè):設(shè)未知數(shù)(可分直接設(shè)法,間接設(shè)法)。
3.列:根據(jù)題意列方程。
4.解:解出所列方程。
5.檢:檢驗所求的解是否符合題意。
6.答:寫出答案(有單位要注明答案)。
七、有關(guān)常用應(yīng)用類型題及各量之間的關(guān)系
1、和、差、倍、分問題:
(1)倍數(shù)關(guān)系:通過關(guān)鍵詞語“是幾倍,增加幾倍,增加到幾倍,增加百分之幾,增長率……”來體現(xiàn)。
(2)多少關(guān)系:通過關(guān)鍵詞語“多、少、和、差、不足、剩余……”來體現(xiàn)。
2、等積變形問題:
“等積變形”是以形狀改變而體積不變?yōu)榍疤?。常用等量關(guān)系為:
①形狀面積變了,周長沒變;
②原料體積=成品體積。
3、勞力調(diào)配問題:
這類問題要搞清人數(shù)的變化,常見題型有:
(1)既有調(diào)入又有調(diào)出。
(2)只有調(diào)入沒有調(diào)出,調(diào)入部分變化,其余不變。
(3)只有調(diào)出沒有調(diào)入,調(diào)出部分變化,其余不變。
4、數(shù)字問題
(1)要搞清楚數(shù)的表示方法:一個三位數(shù)的百位數(shù)字為a,十位數(shù)字是b,個位數(shù)字為c(其中a、b、c均為整數(shù),且19,09,09)則這個三位數(shù)表示為:100a+10b+c
(2)數(shù)字問題中一些表示:兩個連續(xù)整數(shù)之間的關(guān)系,較大的比較小的大1;偶數(shù)用2n表示,連續(xù)的偶數(shù)用2n+2或2n2表示;奇數(shù)用2n+1或2n1表示。
5、工程問題:
工程問題中的三個量及其關(guān)系為:工作總量=工作效率工作時間
6、行程問題:
(1)行程問題中的三個基本量及其關(guān)系:路程=速度時間。
(2)基本類型有
①相遇問題;
②追及問題;常見的還有:相背而行;行船問題;環(huán)形跑道問題。
7、商品銷售問題
有關(guān)關(guān)系式:
商品利潤=商品售價商品進價=商品標價折扣率商品進價
商品利潤率=商品利潤/商品進價
商品售價=商品標價折扣率
8、儲蓄問題
(1)顧客存入銀行的錢叫做本金,銀行付給顧客的酬金叫利息,本金和利息合稱本息和,存入銀行的時間叫做期數(shù),利息與本金的比叫做利率。利息的20%付利息稅
(2)利息=本金利率期數(shù)
本息和=本金+利息
利息稅=利息稅率(20%)
今天的內(nèi)容就介紹這里了。
初一數(shù)學(xué)必考知識點總結(jié)7
知識點1:正、負數(shù)的概念:我們把像3、2、+0.5、0.03%這樣的數(shù)叫做正數(shù),它們都是比0大的數(shù);像-3、-2、-0.5、-0.03%這樣數(shù)叫做負數(shù)。它們都是比0小的數(shù)。0既不是正數(shù)也不是負數(shù)。我們可以用正數(shù)與負數(shù)表示具有相反意義的量。
知識點2:有理數(shù)的概念和分類:整數(shù)和分數(shù)統(tǒng)稱有理數(shù)。有理數(shù)的分類主要有兩種:
注:有限小數(shù)和無限循環(huán)小數(shù)都可看作分數(shù)。
知識點3:數(shù)軸的概念:像下面這樣規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸。
知識點4:絕對值的概念:
(1)幾何意義:數(shù)軸上表示a的點與原點的距離叫做數(shù)a的絕對值,記作|a|;
(2)代數(shù)意義:一個正數(shù)的絕對值是它的本身;一個負數(shù)的絕對值是它的相反數(shù);零的絕對值是零。
注:任何一個數(shù)的絕對值均大于或等于0(即非負數(shù)).
知識點5:相反數(shù)的概念:
(1)幾何意義:在數(shù)軸上分別位于原點的兩旁,到原點的距離相等的兩個點所表示的數(shù),叫做互為相反數(shù);
(2)代數(shù)意義:符號不同但絕對值相等的兩個數(shù)叫做互為相反數(shù)。0的相反數(shù)是0。
知識點6:有理數(shù)大小的比較:
有理數(shù)大小比較的基本法則:正數(shù)都大于零,負數(shù)都小于零,正數(shù)大于負數(shù)。
數(shù)軸上有理數(shù)大小的比較:在數(shù)軸上表示的兩個數(shù),右邊的數(shù)總比左邊的大。
用絕對值進行有理數(shù)大小的比較:兩個正數(shù),絕對值大的正數(shù)大;兩個負數(shù),絕對值大的負數(shù)反而小。
知識點7:有理數(shù)加法法則:
(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;
(2)異號兩數(shù)相加,絕對值相等時,和為0;絕對值不等時,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;
(3)一個數(shù)與0相加,仍得這個數(shù).
知識點8:有理數(shù)加法運算律:
加法交換律:兩個數(shù)相加,交換加數(shù)的位置,和不變。
加法結(jié)合律:三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。
知識點9:有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。
知識點10:有理數(shù)加減混合運算:根據(jù)有理數(shù)減法的法則,一切加法和減法的運算,都可以統(tǒng)一成加法運算,然后省略括號和加號,并運用加法法則、加法運算律進行計算。