目錄八年級(jí)下冊(cè)數(shù)學(xué)培優(yōu)輔導(dǎo)書(shū) 初二下數(shù)學(xué)學(xué)輔題目 八年級(jí)下冊(cè)數(shù)學(xué)教輔資料推薦 八年級(jí)下冊(cè)數(shù)學(xué)新課程輔導(dǎo) 八年級(jí)下冊(cè)數(shù)學(xué)買什么資料好
有些學(xué)生到了初二會(huì)出現(xiàn)數(shù)學(xué)成績(jī)下滑的問(wèn)題,那么,這些學(xué)生要采取哪些補(bǔ)救措施呢?數(shù)學(xué)成績(jī)差的學(xué)生要做到這陸答兩點(diǎn),分別是把課前預(yù)習(xí)工作做到位、把課后復(fù)習(xí)工作做到位。
把課前預(yù)習(xí)工作做到位
與初一階段的數(shù)學(xué)學(xué)習(xí)相比,初二的學(xué)習(xí)難度顯著提升,有些學(xué)生就會(huì)出現(xiàn)數(shù)學(xué)成績(jī)下滑的問(wèn)題。而數(shù)學(xué)成績(jī)差的學(xué)生通常存在聽(tīng)課效率低的問(wèn)題,也就是說(shuō),不能完全悶悉如聽(tīng)懂老師的講課內(nèi)容,不能在課上將知識(shí)點(diǎn)和解題方法消化吸收到位。學(xué)生的聽(tīng)課效率低就會(huì)導(dǎo)致課后作業(yè)不會(huì)做,或者做起來(lái)特別費(fèi)勁。如果學(xué)生不能將每天上課和作業(yè)中遇到的問(wèn)題及時(shí)解決掉,就會(huì)導(dǎo)致考試成績(jī)一塌糊涂。
所以,數(shù)學(xué)成績(jī)差的學(xué)生要努力提高聽(tīng)課效率,尤其要把課前預(yù)習(xí)工作做到位,不僅要認(rèn)真閱讀教科書(shū)和相關(guān)的輔導(dǎo)書(shū),把老師即將講解的知識(shí)點(diǎn)先梳理一遍,還要將教材上的同步練習(xí)做一遍,檢驗(yàn)自己的預(yù)習(xí)效果。當(dāng)然,查漏補(bǔ)缺也是預(yù)習(xí)工作中的重要內(nèi)容,如果學(xué)生在預(yù)習(xí)過(guò)程中發(fā)現(xiàn)一些已學(xué)知識(shí)點(diǎn)的掌握情況不好,就要盡快把這些學(xué)習(xí)上的漏洞補(bǔ)上,這樣做就能徹底解決跟不上老師講課進(jìn)度的問(wèn)題,也就能逐步擺脫數(shù)學(xué)學(xué)習(xí)困境。
把課后復(fù)習(xí)工作做到位
初二是向初三過(guò)渡的關(guān)鍵階段,為了幫助學(xué)生逐步適應(yīng)中考試卷的難度,老師給學(xué)生做的數(shù)學(xué)題目難度也變大了,有些學(xué)生數(shù)學(xué)成績(jī)差的原因就是不適應(yīng)這種難度的提升,進(jìn)而導(dǎo)致課堂練習(xí)、課后作業(yè)和試卷上的錯(cuò)題特別多。如果學(xué)生不能及時(shí)將這些錯(cuò)題的錯(cuò)誤螞啟原因和解題方法搞明白,就會(huì)在這類題型上反復(fù)出錯(cuò)。
所以,數(shù)學(xué)成績(jī)差的學(xué)生要把復(fù)習(xí)工作做到位,尤其要把錯(cuò)題及時(shí)整理到錯(cuò)題本,不僅要分析每道錯(cuò)題涉及的知識(shí)點(diǎn),把這些知識(shí)點(diǎn)重新復(fù)習(xí)鞏固一遍,還要總結(jié)每道錯(cuò)題的解題方法,并找一些類似的題目做一做,練練手,這樣做就能把自己學(xué)習(xí)中存在的問(wèn)題及時(shí)解決掉。當(dāng)然,錯(cuò)題本的另一個(gè)作用就是用于考前復(fù)習(xí),因?yàn)殄e(cuò)題本上羅列的都是自己曾經(jīng)做錯(cuò)的題目,也就是學(xué)習(xí)中的薄弱環(huán)節(jié),如果學(xué)生能在考前把這些內(nèi)容再?gòu)?fù)習(xí)一遍,就能避免重復(fù)犯錯(cuò),也能達(dá)到提高數(shù)學(xué)成績(jī)的目的。
學(xué)習(xí)這件事不在乎有沒(méi)有人教你,最重要的是在于你自己有沒(méi)有覺(jué)悟和恒心。任何科目學(xué)習(xí) 方法 其實(shí)都是一樣的,不斷的記憶與練習(xí),使知識(shí)刻在腦海里。下面是我給大家整理的一些初二數(shù)學(xué)的知識(shí)點(diǎn),希望對(duì)大家有所幫助。
八年級(jí) 數(shù)學(xué)知識(shí)點(diǎn)整理
數(shù)據(jù)的收集、整理與描述
一.知識(shí)框架
二.知識(shí)概念
1.全面調(diào)查:考察全體對(duì)象的調(diào)查方式叫做全面調(diào)查.
2.抽樣調(diào)查:調(diào)查部分?jǐn)?shù)據(jù),根據(jù)部分來(lái)估扒塵計(jì)總體的調(diào)查方式稱為抽樣調(diào)查.
3.總體:要考察的全體對(duì)象稱為總體.
4.個(gè)體:組成總體的每一個(gè)考察對(duì)象稱為個(gè)體.
5.樣本:被抽取的所有個(gè)體組成一個(gè)樣本.
6.樣本容量:樣本中個(gè)體的數(shù)目稱為樣本容量.
7.頻數(shù):一般地,我們稱落在不同小組中的數(shù)據(jù)個(gè)數(shù)為該組的頻數(shù).
8.頻率:頻數(shù)與數(shù)據(jù)總數(shù)的比為頻率.
9.組數(shù)和組距:在統(tǒng)計(jì)數(shù)據(jù)時(shí),把數(shù)據(jù)按照一定的范圍分成若干各組,分成組的個(gè)數(shù)稱為組數(shù),每一組兩個(gè)端點(diǎn)的差叫做組距.
初二期末上冊(cè)數(shù)學(xué)復(fù)習(xí)資料
1.多邊形的分類:
2.平行四邊形、菱形、矩形、正方形、等腰梯形的定義、性質(zhì)、判別:
(1)平行四邊形:兩組對(duì)邊分別平行的四邊形叫做平行四邊形。平行四邊形的對(duì)邊平行且相等;對(duì)角相等,鄰角互補(bǔ);對(duì)角線互相平分。兩條對(duì)角線互相平分的四邊形是平行四邊形;一組對(duì)邊平行且相等的四邊形是平行四邊形;兩組對(duì)邊分別相等的四邊形是平行四邊形;兩組對(duì)角分別相等的四邊形是平行四邊形;對(duì)角線互相平分的四邊形是平行四邊形。
(2)菱形:一組鄰邊相等的平行四邊形叫做菱形。菱形的四條邊都相等;對(duì)角線互相垂直平分,每一條對(duì)角線平分一組對(duì)角。四條邊都相等的四邊形是菱形;對(duì)角線互相垂直的平行四邊形是菱形;一組鄰邊相等的平行四邊形是菱形;對(duì)角線互相平分且垂直的四邊形是菱形。菱形的面積等于兩條對(duì)角線乘積的一半(面積計(jì)算,即S菱形=L1.L2/2)。
(3)矩形:有一個(gè)內(nèi)角是直角的平行四邊形叫做矩形。矩形的對(duì)角線相等;四個(gè)角都是直角。對(duì)角線相等的平行四邊形是矩形;有一個(gè)角是直角的平行四邊形是矩形。直角三角形斜邊上的中線等于斜邊長(zhǎng)的一半;在直角三角形中30°所對(duì)的直角邊是斜邊的一半。
(4)正方形:一組鄰邊相等的矩形叫做正方形。正方形具有平行四邊形、菱形、矩形的一切性質(zhì)。
(5)等腰梯形同一底上的兩個(gè)內(nèi)角相等,對(duì)角線相等。同一底上的兩個(gè)內(nèi)角相等的梯形是等腰梯形;對(duì)角線相等的梯形是等腰梯形;對(duì)角互補(bǔ)的梯形是等腰梯形。
(6)三角形中位線:連接三角形相連兩邊重點(diǎn)的線段。性質(zhì):平行且等于第三邊的一半
3.多邊形的內(nèi)角和公式:(n-2).180°;多邊形的外角和都等于。
4.中心對(duì)稱圖形:在平面內(nèi),一個(gè)圖形繞某個(gè)點(diǎn)旋轉(zhuǎn),如果旋轉(zhuǎn)前后的圖形互相重合,那么這個(gè)圖形叫做中心對(duì)稱圖形。
初二數(shù)學(xué)復(fù)習(xí)方法
一、復(fù)習(xí)內(nèi)容:
第一章:勾股定理
第二章:實(shí)數(shù)第三章:位置與坐標(biāo)
第四章:一次函數(shù)
第五章:二元一次方程組
第六章:數(shù)據(jù)的分析
第七章:平行線的證明
二、復(fù)習(xí)目標(biāo):
八年級(jí)數(shù)學(xué)本學(xué)期知識(shí)點(diǎn)多,復(fù)習(xí)時(shí)間又比較短,只有三周的時(shí)間。
根據(jù)實(shí)際情況,應(yīng)該完成如下目標(biāo):
(一)、整理本學(xué)期學(xué)過(guò)的知識(shí)與方法:1.第一、七章是幾何部分。這三章的重點(diǎn)是勾股定理的應(yīng)用以及平行線的性質(zhì)與判別還有三角形內(nèi)角和定理及其應(yīng)用。所以記住桐此盯性質(zhì)是關(guān)鍵,學(xué)會(huì)判定是重點(diǎn),靈活應(yīng)用是目的。要學(xué)會(huì)判定方法的選擇,不同圖形之間的區(qū)別和聯(lián)系要非常熟悉,形成一個(gè)有機(jī)整體。對(duì)常見(jiàn)的證明題要多練多總結(jié)。2.第四五六章主要是概念的教學(xué),對(duì)這幾章的考試題型學(xué)生可能都不熟悉,所以要以與課本同步的訓(xùn)練題型為主,要列表或作圖的,讓學(xué)生積極動(dòng)手操作,并得出結(jié)論,課堂上教師講評(píng),盡量是精講多練,該動(dòng)手的要多動(dòng)手,盡可能的讓學(xué)生自己總結(jié)出論證幾何問(wèn)題的常用分析方法。3.第二章主要是計(jì)算,教師提前先把概念、性質(zhì)、方法綜合復(fù)習(xí),加入適當(dāng)?shù)木毩?xí),在練習(xí)計(jì)算。課堂上逐一對(duì)易錯(cuò)題的講解,多強(qiáng)調(diào)解題方法的針對(duì)性。最后針對(duì)平時(shí)練習(xí)中存在的問(wèn)題,查漏補(bǔ)缺。
(二)、在自己經(jīng)歷過(guò)的解決問(wèn)題活動(dòng)中,局和選擇一個(gè)有挑戰(zhàn)問(wèn)題性的問(wèn)題,寫(xiě)下解決它的過(guò)程:包括遇到的困難、克服困難的方法與過(guò)程及所獲得的體會(huì),并選擇這個(gè)問(wèn)題的原因。
(三)、通過(guò)本學(xué)期的數(shù)學(xué)學(xué)習(xí),讓同學(xué)們總結(jié)自己有哪些收獲;有哪些需要改進(jìn)的地方。
三、復(fù)習(xí)方法:
1、強(qiáng)化訓(xùn)練,這個(gè)學(xué)期計(jì)算類和證明類的題目較多,在復(fù)習(xí)中要加強(qiáng)這方面的訓(xùn)練。特別是一次函數(shù),在復(fù)習(xí)過(guò)程中要分類型練習(xí),重點(diǎn)是解題方法的正確選擇同時(shí)使學(xué)生養(yǎng)成檢查計(jì)算結(jié)果的習(xí)慣。還有幾何證明題,要通過(guò)針對(duì)性練習(xí)力爭(zhēng)達(dá)到少失分,達(dá)到證明簡(jiǎn)練又嚴(yán)謹(jǐn)?shù)男Ч?/p>
2、加強(qiáng)管理嚴(yán)格要求,根據(jù)每個(gè)學(xué)生自身情況、學(xué)習(xí)水平嚴(yán)格要求,對(duì)應(yīng)知應(yīng)會(huì)的內(nèi)容要反復(fù)講解、練習(xí),必須做到學(xué)一點(diǎn)會(huì)一點(diǎn),對(duì)接受能力差的學(xué)生課后要加強(qiáng)輔導(dǎo),及時(shí)糾正出現(xiàn)的錯(cuò)誤,平時(shí)多小測(cè)多檢查。對(duì)能力較強(qiáng)的學(xué)生要引導(dǎo)他們多做課外習(xí)題,適當(dāng)提高做題難度。
3、加強(qiáng)證明題的訓(xùn)練,通過(guò)近階段的學(xué)習(xí),我發(fā)現(xiàn)學(xué)生對(duì)證明題掌握不牢,不會(huì)找合適的分析方法,部分學(xué)生看不懂題意,沒(méi)有思路。在今后的復(fù)習(xí)中我準(zhǔn)備拿出一定的時(shí)間來(lái)專項(xiàng)練習(xí)證明題,引導(dǎo)學(xué)生如何弄懂題意、怎樣分析、怎樣寫(xiě)證明過(guò)程。力爭(zhēng)讓學(xué)生把各種類型題做全并抓住其特點(diǎn)。
4、加強(qiáng)成績(jī)不理想學(xué)生的輔導(dǎo),制定詳細(xì)的復(fù)習(xí)計(jì)劃,對(duì)他們要多表?yè)P(yáng)多鼓勵(lì),調(diào)動(dòng)他們學(xué)習(xí)的積極性,利用課余時(shí)間對(duì)他們進(jìn)行輔導(dǎo),輔導(dǎo)時(shí)要有耐心,要心平氣和,對(duì)不會(huì)的知識(shí)要多講幾遍,不怕麻煩,直至弄懂弄會(huì)。
初二數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)梳理相關(guān)文章:
★初二數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)歸納與數(shù)學(xué)學(xué)習(xí)方法
★八年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)整理
★初二數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié)歸納
★八年級(jí)數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)整理
★初二下冊(cè)數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)歸納
★八年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納
★初二數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)
★初二數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié)
★初二數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)人教版
★初二下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)
學(xué)習(xí)從來(lái)無(wú)捷徑。每一門科目都有自己的學(xué)習(xí) 方法 ,但其實(shí)都是萬(wàn)變不離其中的,數(shù)學(xué)作為主科之一,和語(yǔ)文英語(yǔ)一樣,也是要記、要背、要講練的。下面是我給大家整理的一些初二數(shù)學(xué)下冊(cè)的知識(shí)點(diǎn),希望對(duì)大家有所幫助。
初二下冊(cè)判雹數(shù)學(xué)知識(shí)點(diǎn)歸納北師大版
第一章分式
1、分式及其基本性質(zhì)分式的分子和分母同時(shí)乘以(或除以)一個(gè)不等于零的整式,分式的只不變
2、分式的運(yùn)算
(1)分式的乘除乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。
(2)分式的加減加減法法則:同分母分式相加減,分母不變,把分子相加減;異分母分式相加減,先通分,變?yōu)橥帜傅姆质?,再加減
3、整數(shù)指數(shù)冪的加減乘除法
4、分式方程及其解法
第二章反比例函數(shù)
1、反比例函數(shù)的表達(dá)式、圖像、性質(zhì)
圖像:雙曲線
表掘物帆達(dá)式:y=k/x(k不為0)
性質(zhì):兩支的增減性相同;
2、反比例函數(shù)在實(shí)際問(wèn)題中的應(yīng)用
第三章勾股定理
1、勾股定理:直角三角形的兩個(gè)直角邊的平方和等于斜邊的平方
2、勾股定理的逆定理:如果一個(gè)三角形中,有兩個(gè)邊的平方和等于第三條邊的平方,那么這個(gè)三角形是直角三角形。
初二下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)
1、平行四邊形
性質(zhì):對(duì)邊相等;對(duì)角相等;對(duì)角線互相平分。
判定:兩組對(duì)邊分別相等的四邊形是平行四邊形;
兩組對(duì)角分別相等的四邊形是平行四邊形;
對(duì)角線互相平分的四邊形是平行四邊形;
一組對(duì)邊平行而且相等的四邊形是平行四邊形。
推論:三角形的中位線平行第三邊,并且等于第三邊的一半。
2、特殊的平行四邊形:矩形、菱形、正方形
(1)矩形
性質(zhì):矩形的四個(gè)角都是直角;
矩形的對(duì)角線相等;
矩形具有平行四邊形的所有性質(zhì)
判定:有一個(gè)角是直角的平行四邊形是矩形;對(duì)角線相等的平行四邊形是矩形;
推論:直角三角形斜邊的中線等于斜邊的一半。
(2)菱形性質(zhì):菱形的四條邊都相等;菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;菱形具有平行四邊形的螞亂一切性質(zhì)
判定:有一組鄰邊相等的平行四邊形是菱形;對(duì)角線互相垂直的平行四邊形是菱形;四邊相等的四邊形是菱形。
(3)正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質(zhì)。
3、梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底邊上的兩個(gè)角相等;等腰梯形的兩條對(duì)角線相等;同一個(gè)底上的兩個(gè)角相等的梯形是等腰梯形。
第五章數(shù)據(jù)的分析
加權(quán)平均數(shù)、中位數(shù)、眾數(shù)、極差、方差
初二數(shù)學(xué)三角形知識(shí)點(diǎn)歸納
【直角三角形】
◆備考兵法
1.正確區(qū)分勾股定理與其逆定理,掌握常用的勾股數(shù).
2.在解決直角三角形的有關(guān)問(wèn)題時(shí),應(yīng)注意以勾股定理為橋梁建立方程(組)來(lái)解決問(wèn)題,實(shí)現(xiàn)幾何問(wèn)題代數(shù)化.
3.在解決直角三角形的相關(guān)問(wèn)題時(shí),要注意題中是否含有特殊角(30°,45°,60°).若有,則應(yīng)運(yùn)用一些相關(guān)的特殊性質(zhì)解題.
4.在解決許多非直角三角形的計(jì)算與證明問(wèn)題時(shí),常常通過(guò)作高轉(zhuǎn)化為直角三角形來(lái)解決.
5.折疊問(wèn)題是新中考熱點(diǎn)之一,在處理折疊問(wèn)題時(shí),動(dòng)手操作,認(rèn)真觀察,充分發(fā)揮空間想象力,注意折疊過(guò)程中,線段,角發(fā)生的變化,尋找破題思路.
【三角形的重心】
已知:△ABC中,D為BC中點(diǎn),E為AC中點(diǎn),AD與BE交于O,CO延長(zhǎng)線交AB于F。求證:F為AB中點(diǎn)。
證明:根據(jù)燕尾定理,S(△AOB)=S(△AOC),又S(△AOB)=S(△BOC),∴S(△AOC)=S(△BOC),再應(yīng)用燕尾定理即得AF=BF,命題得證。
重心的幾條性質(zhì):
1.重心和三角形3個(gè)頂點(diǎn)組成的3個(gè)三角形面積相等。
2.重心到三角形3個(gè)頂點(diǎn)距離的平方和最小。
3.在平面直角坐標(biāo)系中,重心的坐標(biāo)是頂點(diǎn)坐標(biāo)的算術(shù)平均,即其坐標(biāo)為((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空間直角坐標(biāo)系——橫坐標(biāo):(X1+X2+X3)/3縱坐標(biāo):(Y1+Y2+Y3)/3豎坐標(biāo):(Z1+Z2+Z3)/3
4重心到頂點(diǎn)的距離與重心到對(duì)邊中點(diǎn)的距離之比為2:1。
5.重心是三角形內(nèi)到三邊距離之積的點(diǎn)。
如果用塞瓦定理證,則極易證三條中線交于一點(diǎn)。
初二數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)相關(guān)文章:
★初二數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)歸納與數(shù)學(xué)學(xué)習(xí)方法
★八年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)整理
★初二數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)人教版
★初二數(shù)學(xué)下冊(cè)重點(diǎn)知識(shí)總結(jié)
★初二下冊(cè)數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)歸納
★八年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納
★八年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納
★初二下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)
★初二下數(shù)學(xué)知識(shí)點(diǎn)
★八年級(jí)下冊(cè)的數(shù)學(xué)知識(shí)點(diǎn)
數(shù)學(xué)對(duì)于初二的同學(xué)來(lái)說(shuō),它不像初一那么簡(jiǎn)單,它學(xué)的更加深?yuàn)W一些。殲指數(shù)不是死記硬背的學(xué)科,我們要適當(dāng)?shù)母淖冏约旱膶W(xué)跡廳習(xí)方法,去理解數(shù)學(xué)的公式,定理,法則。在理解的基礎(chǔ)上學(xué)習(xí)將會(huì)更加得心應(yīng)手。在課堂上,也要緊跟老師的思路,這樣才能學(xué)習(xí)到重點(diǎn),提高自己的學(xué)習(xí)效率。在課下,也要多加練習(xí),數(shù)學(xué)這門學(xué)科要靠訓(xùn)練,在練的過(guò)程中,要準(zhǔn)備一個(gè)錯(cuò)題本,梳理自己的思路,在整理錯(cuò)姿改隱題的過(guò)程中,再一次將自己的思路在腦中過(guò)一遍。要指定相應(yīng)的學(xué)習(xí)計(jì)劃,端正自己的態(tài)度,這樣才能事半功倍。
數(shù)學(xué)說(shuō)難也難,說(shuō)不難也不難。關(guān)于在于如何學(xué)習(xí),不知道同學(xué)對(duì)于初二數(shù)學(xué)知識(shí)點(diǎn)褲判總結(jié)歸納過(guò)沒(méi)。下面是由我為大家整理的“初二數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)歸納”,僅供參考,歡迎大家閱讀。
初二數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)歸納
一. 分解因式
1. 把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式.
2. 因式分解與整式乘法是互逆關(guān)系。因式分解與整式乘法的區(qū)別和聯(lián)系:
(1)整式乘法是把鋒純團(tuán)幾個(gè)整式相乘,化為一個(gè)多項(xiàng)式;
(2)因式分解是把一個(gè)多項(xiàng)式化為幾個(gè)因式相乘.
二. 提公共因式法
1. 如果一個(gè)多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個(gè)公因式提出來(lái),從而將多項(xiàng)式化成兩個(gè)因式乘積的形式.這種分解因式的方法叫做提公因式法.如: ab+ac=a(b+c)
2. 概念內(nèi)涵:(1)因式分解的最后結(jié)果應(yīng)當(dāng)是“積”;(2)公因式可能是單項(xiàng)式,也可能是多項(xiàng)式;(3)提公因式法的理論依據(jù)是乘法對(duì)加法的分配律,即: ma+mb-mc=m(a+b-c)
3. 易錯(cuò)點(diǎn)點(diǎn)評(píng):(1)注意項(xiàng)的符號(hào)與冪指數(shù)是否搞錯(cuò);(2)公因式是否提“干凈”;
(3)多項(xiàng)式中某一項(xiàng)恰為公因式,提出后,括號(hào)中這一項(xiàng)為+1,不漏掉.
三. 運(yùn)用公式法
1. 如果把乘法公式反過(guò)來(lái),就可以用來(lái)把某些多項(xiàng)式分解因式.這種分解因式的方法叫做運(yùn)用公式法.
2. 主要公式:
4. 運(yùn)用公式法:
(1)平方差公式: ①應(yīng)是二項(xiàng)式或視作二項(xiàng)式的多項(xiàng)式;②二項(xiàng)式的每項(xiàng)(不含符號(hào))都是一個(gè)單項(xiàng)式(或多項(xiàng)式)的平方;③二項(xiàng)是異號(hào).
(2)完全平方公式:①應(yīng)是三項(xiàng)式;②其中兩項(xiàng)同號(hào),且各為一整式的平方;
③還有一項(xiàng)可正可負(fù),且它是前兩項(xiàng)冪的底數(shù)乘積的2倍.
5. 因式分解的思路與解題步驟:
(1)先看各項(xiàng)有沒(méi)有公因式,若有,則先提取公因式;(2)再看能否使用公式法;(3)用分組分解法,即通過(guò)分組后提取各組公因式或運(yùn)用公式法來(lái)達(dá)到分解的目的;
(4)因式分解的最后結(jié)果必須是幾個(gè)整式的乘積,否則不是因式分解;
(5)因式分解的結(jié)果必須進(jìn)行到每個(gè)因式在有理數(shù)范圍內(nèi)不能再分解為止.
初二數(shù)學(xué)重點(diǎn)知識(shí)
Ⅰ. 平行四邊形
(1)平行銀橘四邊形性質(zhì)
1)平行四邊形的定義:有兩組對(duì)邊分別平行的四邊形叫做平行四邊形.
2)平行四邊形的性質(zhì)(包括邊、角、對(duì)角線三方面) :
邊:①平行四邊形的兩組對(duì)邊分別平行;
②平行四邊形的兩組對(duì)邊分別相等;
角:③平行四邊形的兩組對(duì)角分別相等;
對(duì)角線:④平行四邊形的對(duì)角線互相平分.
【補(bǔ)充】平行四邊形的鄰角互補(bǔ);平行四邊形是中心對(duì)稱圖形,對(duì)稱中心是對(duì)角線的交點(diǎn).
(2)平行四邊形判定
1)平行四邊形的判定(包括邊、角、對(duì)角線三方面):
邊:①兩組對(duì)邊分別平行的四邊形是平行四邊形;
②兩組對(duì)邊分別相等的四邊形是平行四邊形;
③一組對(duì)邊平行且相等的四邊形是平行四邊形;
角:④兩組對(duì)角分別相等的四邊形是平行四邊形;
對(duì)角線:⑤對(duì)角線互相平分的四邊形是平行四邊形.
2)三角形中位線:連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線.
3)三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半.
4)平行線間的距離:
兩條平行線中,一條直線上的任意一點(diǎn)到另一條直線的距離,叫做這兩條平行線間的距離。兩條平行線間的距離處處相等。
Ⅱ. 矩形
(1)矩形的性質(zhì)
1)矩形的定義:有一個(gè)角是直角的平行四邊形叫做矩形.
2)矩形的性質(zhì):
①矩形具有平行四邊形的所有性質(zhì);
②矩形的四個(gè)角都是直角;
③矩形的對(duì)角線相等;
④矩形既是軸對(duì)稱圖形,又是中心對(duì)稱圖形,有兩條對(duì)稱軸,對(duì)稱中心是對(duì)角線的交點(diǎn).
(2)矩形的判定
1)矩形的判定:
①有一個(gè)角是直角的平行四邊形是矩形;
②對(duì)角線相等的平行四邊形是矩形;
③有三個(gè)角是直角的四邊形是矩形.
2)證明一個(gè)四邊形是矩形的步驟:
方法一:先證明該四邊形是平行四邊形,再證一角為直角或?qū)蔷€相等;
方法二:若一個(gè)四邊形中的'直角較多,則可證三個(gè)角為直角.
3)直角三角形斜邊中線定理:(如右圖)
直角三角形斜邊上的中線等于斜邊的一半.
Ⅲ. 菱形
(1)菱形的性質(zhì)
1)菱形的定義:有一組鄰邊相等的平行四邊形叫做菱形.
2)菱形的性質(zhì):
①菱形具有平行四邊形的所有性質(zhì);
②菱形的四條邊都相等;
③菱形的兩條對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;
④菱形既是軸對(duì)稱圖形,又是中心對(duì)稱圖形,有兩條對(duì)稱軸,對(duì)稱中心是對(duì)角線交點(diǎn).
3)菱形的面積公式:
菱形的兩條對(duì)角線的長(zhǎng)分別為,則
(2)菱形的判定
1)菱形的判定:
①有一組鄰邊相等的平行四邊形是菱形;
②對(duì)角線互相垂直的平行四邊形是菱形;
③四條邊都相等的四邊形是菱形.
2)證明一個(gè)四邊形是菱形的步驟:
方法一:先證明它是一個(gè)平行四邊形,然后證明“一組鄰邊相等”或“對(duì)角線互相垂直”;
方法二:直接證明“四條邊相等”.
Ⅳ. 正方形
(1)正方形的性質(zhì)
1)正方形的定義:有一組鄰邊相等且有一個(gè)角是直角的平行四邊形叫做正方形.
2)正方形的性質(zhì):
正方形具有平行四邊形、矩形、菱形的所有性質(zhì),即①正方形的四條邊都相等;②四個(gè)角都是直角;③對(duì)角線互相垂直平分且相等,并且每條對(duì)角線平分一組對(duì)角.
3)正方形既是軸對(duì)稱圖形,又是中心對(duì)稱圖形,它有四條對(duì)稱軸,對(duì)角線的交點(diǎn)是對(duì)稱中心.
(2)正方形的判定
1)正方形的判定:
①有一組鄰邊相等且有一個(gè)角是直角的平行四邊形是正方形;
②有一組鄰邊相等的矩形是正方形;
③對(duì)角線互相垂直的矩形是正方形;
④有一個(gè)角是直角的菱形是正方形;
⑤對(duì)角線相等的菱形是正方形;
⑥對(duì)角線互相垂直平分且相等的四邊形是正方形.
初二數(shù)學(xué)??贾R(shí)
1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形.
2.三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊.
3.高:從三角形的一個(gè)頂點(diǎn)向它的對(duì)邊所在直線作垂線,頂點(diǎn)和垂足間的線段叫做三角形的高.
4.中線:在三角形中,連接一個(gè)頂點(diǎn)和它對(duì)邊中點(diǎn)的線段叫做三角形的中線.
5.角平分線:三角形的一個(gè)內(nèi)角的平分線與這個(gè)角的對(duì)邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)之間的線段叫做三角形的角平分線.
6.三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個(gè)性質(zhì)叫三角形的穩(wěn)定性.
7.多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形.
8.多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角.
9.多邊形的外角:多邊形的一邊與它的鄰邊的延長(zhǎng)線組成的角叫做多邊形的外角.
10.多邊形的對(duì)角線:連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對(duì)角線.
11.正多邊形:在平面內(nèi),各個(gè)角都相等,各條邊都相等的多邊形叫正多邊形.
12.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面,
13.公式與性質(zhì):
⑴三角形的內(nèi)角和:三角形的內(nèi)角和為180°
⑵三角形外角的性質(zhì):
性質(zhì)1:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和.
性質(zhì)2:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角.
⑶多邊形內(nèi)角和公式:邊形的內(nèi)角和等于·180°
⑷多邊形的外角和:多邊形的外角和為360°.
⑸多邊形對(duì)角線的條數(shù):①?gòu)倪呅蔚囊粋€(gè)頂點(diǎn)出發(fā)可以引條對(duì)角。
拓展閱讀:九年級(jí)數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)
1、 二次根式成立的條件:被開(kāi)方數(shù)是一個(gè)非負(fù)數(shù)。
2、 二次根式的實(shí)質(zhì):是一個(gè)非負(fù)數(shù)的算術(shù)平方根。因此√a≥0。
3、 兩個(gè)公式:(√a)2=a(a≥0);√a2=∣a∣.
4、 二次根式的乘除:√a ×√b=√ab(a≥0,b≥0);√a÷√b=√a/b(a≥0,b>0).
5、 最簡(jiǎn)二次根式:⑴被開(kāi)方數(shù)不含分母;⑵被開(kāi)方數(shù)中不含能開(kāi)的盡方的因數(shù)或因式。
6、 二次根式的加減:先將二次根式化成最簡(jiǎn)二次根式,再將被開(kāi)方數(shù)相同的二次根式進(jìn)行合并。
7、 利用公式:(a+b)(a-b)=a2-b2 ;(a±b)2=a2±2ab+b2.
第二十二章 一元二次方程
1、 定義:形如:ax2+bx+c=0(a≠0)的方程叫一元二次方程。
① 是整式方程,②未知數(shù)的最高次數(shù)是二次,③只含有一個(gè)未知數(shù),④二次項(xiàng)系數(shù)不為零。
2、 化為一元二次方程的一般形式:按降冪排列,二次項(xiàng)系數(shù)通常為正,右端為零。
3、 一元二次方程的根:代入使方程成立。
4、 一元二次方程的解法:①配方法:移項(xiàng)→二次項(xiàng)系數(shù)化為一→兩邊同時(shí)加上一次項(xiàng)系數(shù)的一半→配方→開(kāi)方→寫(xiě)出方程的解。
②公式法:x=(-b±√b2-4ac)/2a.③因式分解法:右端為零,左端分解為兩個(gè)因式的乘積。
5、 一元二次方程的根的判別式:①當(dāng)△>0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根,②當(dāng)△=0時(shí),方程有兩個(gè)相等的實(shí)數(shù)根,③當(dāng)△<0時(shí),方程沒(méi)有實(shí)數(shù)根。
注意:應(yīng)用的前提條件是:a≠0.
6、 一元二次方程根與系數(shù)的關(guān)系:x1 + x2= -b/a ,x1 * x2 = c/a.
注意:應(yīng)用的前提條件是:a≠0,△≥0.
7、 列方程解應(yīng)用題:審題設(shè)元→列代數(shù)式、列方程→整理成一般形式→解方程→檢驗(yàn)作答。
第二十三章 旋轉(zhuǎn)
1、 旋轉(zhuǎn)的三要素:旋轉(zhuǎn)中心,旋轉(zhuǎn)方向,旋轉(zhuǎn)角。
2、 旋轉(zhuǎn)的性質(zhì):①對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,②對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角,③旋轉(zhuǎn)前、后的圖形全等。
關(guān)鍵:找好對(duì)應(yīng)線段、對(duì)應(yīng)角。
3、 中心對(duì)稱:把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180°,如果它能夠與另一個(gè)圖形重合,那么這兩個(gè)圖形關(guān)于這個(gè)點(diǎn)對(duì)稱或中心對(duì)稱。
4、 中心對(duì)稱的性質(zhì):①關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)應(yīng)點(diǎn)所連線段都經(jīng)過(guò)對(duì)稱中心,而且被對(duì)稱中心所平分。②關(guān)于中心對(duì)稱的兩個(gè)圖形是全等形。
5、 中心對(duì)稱圖形:把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來(lái)的圖形重合,那么這個(gè)圖形叫做中心對(duì)稱圖形。
6、 對(duì)稱點(diǎn)的坐標(biāo)規(guī)律:①關(guān)于x軸對(duì)稱:橫坐標(biāo)不變,縱坐標(biāo)互為相反數(shù),②關(guān)于y軸對(duì)稱:橫坐標(biāo)互為相反數(shù),縱坐標(biāo)不變,③關(guān)于原點(diǎn)對(duì)稱:橫坐標(biāo)、縱坐標(biāo)都互為相反數(shù)。
第二十四章 圓
1、 確定圓的條件:圓心→位置,半徑→大小。
2、 和圓有關(guān)的概念:弦---直徑,弧—半圓、優(yōu)弧、劣弧,圓心角,圓周角,弦心距。
3、 圓的對(duì)稱性:圓既是軸對(duì)稱圖形,又是中心對(duì)稱圖形。
4、 垂徑定理:垂直于弦的直徑平分弦,并且平分弦所對(duì)的兩條弧。
推論:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧。
5、 圓心角、弧、弦、弦心距之間的關(guān)系:在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,弦的弦心距相等。
引申:在這四組量中,只要有一組量對(duì)應(yīng)相等,其余各組量都相等。
6、 圓周角定理:①圓周角等于同弧所對(duì)的圓心角的一半,
②在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半;相等的圓周角所對(duì)的弧相等,
③半圓(或直徑)所對(duì)的圓周角是直角,90°的圓周角所對(duì)的弦是直徑。
7、 內(nèi)心和外心:①內(nèi)心是三角形內(nèi)角平分線的交點(diǎn),它到三角形三邊的距離相等。
②外心是三角形三邊垂直平分線的交點(diǎn),它到三角形三個(gè)頂點(diǎn)的距離相等。
8、 直線和圓的位置關(guān)系:相交→d
9、 切線的判定:“有點(diǎn)連圓心”→證垂直?!盁o(wú)點(diǎn)做垂線”→證d=r。
切線的性質(zhì):圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑。
10、切線長(zhǎng)定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,這一點(diǎn)和圓心的連線平分兩條切線的夾角。
11、圓內(nèi)接四邊形的性質(zhì):圓內(nèi)接四邊形的對(duì)角互補(bǔ),每一個(gè)外角等于它的內(nèi)對(duì)角。
12、圓外切四邊形的性質(zhì):圓外切四邊形的`對(duì)邊之和相等。
13、圓和圓的位置關(guān)系:外離→d>R+r.外切→d=R+r.相交→R-r
14、正多邊形和圓:半徑→外接圓的半徑,中心角→每一邊所對(duì)的圓心角,邊心距→中心到一邊的距離。
15、弧長(zhǎng)和扇形面積:L=n∏R/180. S扇形=n∏R2/360.
16、圓錐的側(cè)面積和全面積:圓錐的母線長(zhǎng)=扇形的半徑,圓錐底面圓周長(zhǎng)=扇形弧長(zhǎng),圓錐的側(cè)面積=扇形面積,圓錐的全面積=扇形面積+底面圓面積。
第二十五章 概率初步
1、 三種事件:隨機(jī)事件、不可能事件、必然事件。
2、 概率:P(A)=p. 0≤P(A)≤1.
3、 古典概率的求法:①列舉法(把所有可能結(jié)果都表示出來(lái)),②列表法,③樹(shù)形圖。
4、 用頻率估計(jì)概率:根據(jù)一個(gè)隨機(jī)發(fā)生的事件發(fā)生的頻率所逐漸穩(wěn)定到的常數(shù),可以估計(jì)這個(gè)事件發(fā)生的概率。
第二十六章 二次函數(shù)
1、 定義:形如y=ax2+bx+c(a≠0,a、b、c是常數(shù))的函數(shù)叫二次函數(shù)。
2、 二次函數(shù)的分類:①y=ax2: 頂點(diǎn)坐標(biāo):原點(diǎn); 對(duì)稱軸:y軸;
②y=ax2+c: 頂點(diǎn)坐標(biāo):(0、c); 對(duì)稱軸:y軸;
③y=a(x-h)2: 頂點(diǎn)坐標(biāo):(h、0); 對(duì)稱軸:直線x=h;
④y=a(x-h)2+k:頂點(diǎn)坐標(biāo):(h、k); 對(duì)稱軸:直線x=h;
⑤y=ax2+bx+c: 頂點(diǎn)坐標(biāo):(-b/2a,4ac-b2/4a);對(duì)稱軸:直線x=-b/2a
3、a、b、c符號(hào)的判定:a:開(kāi)口方向向上→a>0;開(kāi)口方向向下→a<0。
b:與a左同右異,對(duì)稱軸在y軸左側(cè),a、b同號(hào);對(duì)稱軸在y軸右側(cè),a、b異號(hào)。
C:交與y軸正半軸,c>0;交與y軸負(fù)半軸,c<0.
b2-4ac:與x軸交點(diǎn)的個(gè)數(shù),△>0→兩個(gè)交點(diǎn),△<0→無(wú)交點(diǎn),△=0→一個(gè)交點(diǎn)。
3、 平移規(guī)律:“正左負(fù)右”“正上負(fù)下”。
前提:配方成y=a(x-h)2+k的形式。
4、 待定系數(shù)法確定函數(shù)關(guān)系式:①頂點(diǎn)在原點(diǎn)選y=ax2;
②頂點(diǎn)在y軸選y=ax2+c;
③通過(guò)坐標(biāo)原點(diǎn)選y=ax2+bx;
④知道頂點(diǎn)在x軸上選y=a(x-h)2;
⑤知道頂點(diǎn)坐標(biāo)選y=a(x-h)2+k;
⑥知道三點(diǎn)的坐標(biāo)選y=ax2+bx+c。
5、 其他應(yīng)用:求與x軸的交點(diǎn)→解一元二次方程;與y軸交點(diǎn)為(0、c)。
6、 對(duì)稱規(guī)律:①兩拋物線關(guān)于x軸對(duì)稱:a、b、c都變?yōu)槠湎喾磾?shù)。
②兩拋物線關(guān)于y軸對(duì)稱:a、c不變,b變?yōu)槠湎喾磾?shù)。
7、 實(shí)際問(wèn)題:利潤(rùn)=銷售額-總進(jìn)價(jià)-其他費(fèi)用,利潤(rùn)=(售價(jià)-進(jìn)價(jià))*銷售量-其他費(fèi)用。